# Binomial Probability Distribution

A statistical experiment having successive independent trials having two possible outcomes (such as success and failure; true and false; yes and no; right and wrong etc.) and probability of success is equal for each trial, while this kind of experiment is repeated a fixed number of times (say $n$ times) is called Binomial Experiment, Each trial of this Binomial experiment is known as Bernoulli trial (a trial which is a single performance of an experiment), for example. There are four properties of Binomial Experiment.

1. Each trial of Binomial Experiment can be classified as success or failure.
2. The probability of success for each trial of the experiment is equal.
3. Successive trials are independent, that is, the occurrence of one outcome in an experiment does not affect occurrence of the other.
4. The experiment is repeated a fixed number of times.

## Binomial Probability Distribution

Let a discrete random variable, which denotes the number of successes of a Binomial Experiment (we call this binomial random variable). The random variable assume isolated values as $X=0,1,2,\cdots,n$. The probability distribution of binomial random variable is termed as binomial probability distribution. It is a discrete probability distribution.

## Binomial Probability Mass Function

The probability function of binomial distribution is also called binomial probability mass function and can be denoted by $b(x, n, p)$, that is, a binomial distribution of random variable $X$ with $n$ (given number of trials) and $p$ (probability of success) as parameters. If $p$ is the probability of success (alternatively $q=1-p$ is probability of failure such that $p+q=1$) then probability of exactly $x$ success can be found from the following formula,

\begin{align}
b(x, n, p) &= P(X=x)\\
&=\binom{n}{x} p^x q^{n-x}, \quad x=0,1,2, \cdots, n
\end{align}

where $p$ is probability of success of a single trial, $q$ is probability of failure and $n$ is number of independent trials.

The formula gives probability for each possible combination of $n$ and $p$ of binomial random variable $X$. Note that it does not give $P(X <0)$ and $P(X>n)$. Binomial distribution is suitable when $n$ is small and is applied when sampling done is with replacement.

$b(x, n, p) = \binom{n}{x} p^x q^{n-x}, \quad x=0,1,2,\cdots,n,$

is called Binomial distribution because its successive terms are exactly same as that of binomial expansion of

\begin{align}
(q+p)^n=\binom{0}{0} p^0 q^{n-0}+\binom{n}{1} p^1 q^{n-1}+\cdots+\binom{n}{n-1} p^n q^{n-(n-1)}+\binom{n}{n} p^n q^{n-n}
\end{align}

$\binom{n}{0}, \binom{n}{1}, \binom{n}{2},\cdots, \binom{n}{n-1}, \binom{n}{n}$ are called Binomial coefficients.

Note that it is necessary to describe the limit of the random variable otherwise it will be only the mathematical equation not the probability distribution.

Updated: Jun 17, 2016 — 12:02 pm