Block Design, Incidence and Concurrence Matrix

Block Designs Properties

The necessary conditions that the parameters of a BIB design must satisfy are

  • $bk = vr$, where $r=\frac{bk}{v}$ each treatment has $r$ replications
  • no treatment appears more than once in any block
  • all unordered pairs of treatments appear exactly in $\lambda$ blocks (equiconcurrence)
    where $\lambda=\frac{r(k-1)}{v-1}=\frac{bk(k-1}{v(v-1)}$ is often referred to as the concurrence parameter of a BIB design.

A design say $d$ with parameters $(v, b, r, k, \lambda)$ can be represented as a $v \times b$ treatment block incidence matrix (having $v$ rows and $b$ columns). Let denote it by $N=n_{ij}$ whose elements $n_{ij}$ signify the number of units in block $j$ allocated to treatment $i$. The rows of incidence matrix are labeled with varieties (treatments) of the design and the columns with the blocks. We have to put 1 in the ($i$, $j$)th cell of the matrix if variety $i$ is contained in block $j$ and 0 otherwise. Each row of the incidence matrix has $r$ 1’s and each column has $k$ 1’s and each pair of distinct rows have $\lambda$ column 1’s, which lead to a useful identity matrix.
The matrix $NN’$ have $v$ rows and $v$ columns, referred to as concurrence matrix of design $d$ and its entries, the concurrence parameters are denoted by $\lambda_{dij}$. For a BIBD, $n_{ij}$ is either one or zero and $n_{ij}^2= n_{ij}$.

Theorem: If $N$ is the incidence matrix of a $(v, b, r, k, \lambda)$-design then $NN’=(r-\lambda)I+\lambda J$ where $I$ is $v\times v$ identity matrix and $J$ is the $v\times v$ matrix of all 1’s.

Example: For design {1,2,3}, {2,3,4}, {3,4,1}, {4,1,2} construct incidence matrix

incidence matrix

Incidence and Concurrence matrixDenoting the elements of $NN’$ by $q_{ih}$, we see that $q_{ii}=\sum_j n_{ij}^2$ and $q_{ih}=\sum_j n_{ij} n_{hj}, (i \ne h)$. For any block design $NN’$, the treatment concurrence with diagonal elements equal to $q_{ii}=r$ and off diagonal elements are $q_{ih}=\lambda, (i\ne h)$ equal to the number of times any pairs of treatment occur together within block. In a balanced design, the off-diagonal entries in $NN’$ are all equal to a constant $\lambda$ i.e., the common replication for a BIBD is $r$, and the common pairwise treatment concurrence is $\lambda$.

As $N$ is a matrix of $v$ rows and $b$ columns so that $r(N)\le min(b, c)$. Hence, $t\le min(b, v)$. If design is symmetric $b=v$ and $N$ is square the $|NN’|=|N|^2$, so $(r-\lambda)^{v-1}r^2$ is a perfect square.

Muhammad Imdad Ullah

Currently working as Assistant Professor of Statistics in Ghazi University, Dera Ghazi Khan. Completed my Ph.D. in Statistics from the Department of Statistics, Bahauddin Zakariya University, Multan, Pakistan. l like Applied Statistics, Mathematics, and Statistical Computing. Statistical and Mathematical software used is SAS, STATA, GRETL, EVIEWS, R, SPSS, VBA in MS-Excel. Like to use type-setting LaTeX for composing Articles, thesis, etc.

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.