Non Central Chi Squared Distribution

The Non Central Chi Squared Distribution is a generalization of the Chi Squared Distribution.
If $Y_{1} ,Y_{2} ,\cdots ,Y_{n} \sim N(0,1)$ i.e. $(Y_{i} \sim N(0,1)) \Rightarrow y_{i}^{2} \sim \psi _{i}^{2}$ and $\sum y_{i}^{2}  \sim \psi _{(n)}^{2} $

If mean ($\mu $) is non-zero then $y_{i} \sim N(\mu _{i} ,1)$ i.e each $y_{i} $ has different mean
\Rightarrow  & \qquad y_i^2 \sim \psi_{1,\frac{\mu_i^2}{2}} \\
\Rightarrow  & \qquad \sum y_i^2 \sim \psi_{(n,\frac{\sum \mu_i^2}{2})} =\psi_{(n,\lambda )}^{2}

Note that if $\lambda =0$ then we have central $\psi ^{2} $. If $\lambda \ne 0$ then it is non central chi squared distribution because it has no central mean (as distribution is not standard normal).

Central Chi-Square Distribution $f(x)=\frac{1}{2^{\frac{n}{2}} \left|\! {\overline{\frac{n}{2} }}  \right. } \chi ^{\frac{n}{2} -1} e^{-\frac{x}{2} }; \qquad 0<x<\infty $


If $Y_{1} ,Y_{2} ,\cdots ,Y_{n} $ are independent normal random variables with $E(y_{i} )=\mu _{i} $ and $V(y_{i} )=1$ then $w=\sum y_{i}^{2}  $ is distributed as non central chi square with $n$ degree of freedom and non-central parameter $\lambda $, where $\lambda =\frac{\sum \mu _{i}^{2}  }{2} $ and has pdf

f(w)=e^{-\lambda } \sum _{i=0}^{\infty }\left[\frac{\lambda ^{i} w^{\frac{n+2i}{2} -1} e^{-\frac{w}{2} } }{i!\, 2^{\frac{n+2i}{2} } \left|\! {\overline{\frac{n+2i}{2} }}  \right. } \right]\qquad 0\le w\le \infty

Proof: Non Central Chi Squared Distribution

Consider the moment generating function of $w=\sum y_{i}^{2}  $

M_{w} (t)=E(e^{wt} )=E(e^{t\sum y_{i}^{2}  } ); \qquad \text{ where } y_{i} \sim N(\mu \_{i} ,1)

By definition
M_{w} (t) &= \int \cdots \int e^{t\sum y_{i}^{2} } .f(y_{i} )dy_{i} \\
&= K_{1} \int \cdots \int e^{-\frac{1}{2} (1-2t)\left[\sum y_{i}^{2} -\frac{2\sum y_{i} \mu _{i} }{1-2t} \right]}   dy_{1} .dy_{2} \cdots dy_{n} \\
&\text{By completing square}\\
& =K_{1} \int \cdots \int e^{\frac{1}{2} (1-2t)\sum \left[\left[y_{i} -\frac{\mu _{i} }{1-2t} \right]^{2} -\frac{\mu _{i}^{2} }{(1-2t)^{2} } \right]}   dy_{1} .dy_{2} \cdots dy_{n} \\
&= e^{-\frac{\sum \mu_{i}^{2} }{2} \left(1-\frac{1}{1-2t} \right)} \int \cdots \int \left(\frac{1}{\sqrt{2\pi } } \right)^{n} \frac{\frac{1}{\left(\sqrt{1-2t} \right)^{n} } }{\frac{1}{\left(\sqrt{1-2t} \right)^{n} } }  \, e^{-\frac{1}{2.\frac{1}{1-2t} } .\sum \left(y_{i} -\frac{\mu _{i} }{1-2t} \right)^{2} }  dy_{1} .dy_{2} \cdots dy_{n}\\
&=e^{-\frac{\sum \mu _{i}^{2} }{2} \left(1-\frac{1}{1-2t} \right)} .\frac{1}{\left(\sqrt{1-2t} \right)^{n} } \int \cdots \int \left(\frac{1}{\sqrt{2\pi } } \right)^{n}  \frac{1}{\left(\sqrt{\frac{1} {1-2t}} \right)^n} e^{-\, \frac{1}{2.\frac{1}{1-2t} } .\sum \left(y_{i} -\frac{\mu_i}{1-2t}\right)^{2} } dy_{1} .dy_{2} \cdots dy_{n}\\


\[\int_{-\infty}^{\infty } \cdots \int _{-\infty }^{\infty }\left(\frac{1}{\sqrt{2\pi}} \right)^{n} \frac{1}{\left(\frac{1}{1-2t} \right)^{\frac{n}{2}}} e^{-{\frac{1}{2}.\frac{1}{1-2t} }} .\sum \left(y_{i} -\frac{\mu _{i} }{1-2t} \right)^{2} dy_{1} .dy_{2} \cdots dy_{n}\]
is integral of complete density

M_{w}(t)&=e^{-\frac{\sum \mu_i^2}{2} \left(1-\frac{1}{1-2t}\right)} .\left(\frac{1}{\sqrt{1-2t} } \right)^{n} \\
&=\left(\frac{1}{\sqrt{1-2t}}\right)^{n} e^{-\lambda \left(1-\frac{1}{1-2t} \right)} \\
&=e^{-\lambda }.e^{\frac{\lambda}{1-2t}} \frac{1}{(1-2t)^{\frac{n}{2}}}\\
&\text{Using Taylor series about zero}\\
&=e^{-\lambda } \sum _{i=0}^{\infty }\frac{\lambda ^{i} }{i!(1-2t)^{i} (1-2t)^{n/2} }\\
M_{w=y_{i}^{2} } (t)&=e^{-\lambda } \sum _{i=0}^{\infty }\frac{\lambda ^{i} }{i!(1-2t)^{\frac{n+2i}{2} } }\tag{A}

Now Moment Generating Function (MGF) for non-central distribution for a given density function is
M_{\omega} (t) & = E(e^{\omega t} )\\
&=\int _{0}^{\infty }e^{\omega \lambda } e^{-\lambda } \sum _{i=0}^{\infty }\frac{\lambda ^{i} \omega ^{\frac{n+2i}{2} -1} e^{-\frac{\omega }{2} } }{i!2^{\frac{n+2i}{2} } \left|\! {\overline{\frac{n+2i}{2} }}  \right. } d\omega\\
&=e^{-\lambda } \sum _{i=0}^{\infty }\frac{\lambda ^{i} }{i!2^{\frac{n+2i}{2} } \left|\! {\overline{\frac{n+2i}{2} }}  \right. }  \int _{0}^{\infty }e^{\frac{\omega }{2} (1-2t)}  \omega ^{\frac{n+2i}{2} -1} d\omega
\frac{\omega }{2} (1-2t)&=P\\
\Rightarrow \omega & =\frac{2P}{1-2t} \\
\Rightarrow d\omega &=\frac{2dp}{1-2t}

&=e^{-\lambda } \sum\limits_{i=0}^{\infty }\frac{\lambda ^{i} }{i!2^{\frac{n+2i}{2} } \left|\! {\overline{\frac{n+2i}{2} }}  \right. }  \int _{0}^{\infty }e^{-P} \left(\frac{2P}{1-2t} \right)^{\frac{n+2i}{2} -1} \frac{2dP}{1-2t}  \\
&=e^{-\lambda } \sum _{i=0}^{\infty }\frac{\lambda ^{i} 2^{\frac{n+2i}{2} } }{i!2^{\frac{n+2i}{2} } \left|\! {\overline{\frac{n+2i}{2} }}  \right. (1-2t)^{\frac{n+2i}{2} -1} } \int _{0}^{\infty }e^{-P} P^{\frac{n+2i}{2} -1}  dP \\
&=e^{-\lambda } \sum _{i=0}^{\infty }\frac{\lambda ^{i} }{i!\left|\! {\overline{\frac{n+2i}{2} }}  \right. (1-2t)^{\frac{n+2i}{2} } } \left|\! {\overline{\frac{n+2i}{2} }}  \right.

as \[\int\limits _{0}^{\infty }e^{-P} P^{\frac{n+2i}{2} -1}  dP=\left|\! {\overline{\frac{n+2i}{2} }}  \right. \]

\[M_{\omega } (t)=e^{-\lambda } \sum _{i=0}^{\infty }\frac{\lambda ^{i} }{i!(1-2t)^{\frac{n+2i}{2} } }  \tag{B}\]

Comparing ($A$) and ($B$)
\[M_{w=\sum y_{i}^{2} } (t)=M_{\omega } (t)\]

By Uniqueness theorem

\[f_{w} (w)=f_{\omega } (\omega )\]
\Rightarrow \qquad f_{w} (t)&=f(\psi ^{2} )\\
&=e^{-\lambda } \sum _{i=0}^{\infty }\frac{\lambda ^{i} w^{\frac{n+2i}{2} -1} e^{-\frac{w}{2} } }{i!2^{\frac{n+2i}{2} } \left|\! {\overline{\frac{n+2i}{2} }}  \right. };  \qquad o\le w\le \infty
is the pdf of non central chi square with n df and $\lambda =\frac{\sum \mu _{i}^{2} }{2} $ is the non-centrality parameter. Non central chi squared distribution is also Additive as central chi square distribution.


Leave a Comment

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Discover more from Statistics for Data Analyst

Subscribe now to keep reading and get access to the full archive.

Continue reading

Scroll to Top