Properties of a Good Estimator

Introduction (Properties of a Good Estimator)

The post is about a comprehensive discussion of the Properties of a Good Estimator. In statistics, an estimator is a function of sample data used to estimate an unknown population parameter. A good estimator is both efficient and unbiased. An estimator is considered as a good estimator if it satisfies the following properties:

  • Unbiasedness
  • Consistency
  • Efficiency
  • Sufficiency
  • Invariance

Let us discuss these properties of a good estimator one by one.

Unbiasedness

An estimator is said to be an unbiased estimator if its expected value (that is mean of its sampling distribution) is equal to its true population parameter value. Let $\hat{\theta}$ be an unbiased estimator of its true population parameter $\theta$ then $\hat{\theta}$. If $E(\hat{\theta}) = E(\theta)$ the estimator ($\hat{\theta}$) will be unbiased. If $E(\hat{\theta})\ne \theta$, then $\hat{\theta}$ will be a biased estimator of $\theta$.

  • If $E(\hat{\theta}) > \theta$, then $\hat{\theta}$ will be positively biased.
  • If $E(\hat{\theta}) < \theta$, then $\hat{\theta}$ will be negatively biased.

Some examples of biased or unbiased estimators are:

  • $\overline{X}$ is an unbiased estimator of $\mu$, that is, $E(\overline{X}) = \mu$
  • $\widetilde{X}$ is also an unbiased estimator when the population is normally distributed, that is, $E(\widetilde{X}) =\mu$
  • Sample variance $S^2$ is biased estimator of $\sigma^2$, that is, $E(S^2)\ne \sigma^2$
  • $\hat{p} = \frac{x}{n}$ is an unbiased estimator of $E(\hat{p})=p$

It means that if the sampling process is repeated many times and calculations about the estimator for each sample are made, the average of these estimates would be very close to the true population parameter.

An unbiased estimator does not systematically overestimate or underestimate the true parameter.

Consistency

An estimator is said to be a consistent estimator if the statistic to be used as an estimator approaches the true population parameter value by increasing the sample size. OR
An estimator $\hat{\theta}$ is called a consistent estimator of $\theta$ if the probability that $\hat{\theta}$ becomes closer and closer to $\theta$, approaches unity with increasing the sample size.

Symbolically, $\hat{\theta}$ is a consistent estimator of the parameter $\theta$ if for any arbitrary small positive quantity $e$ or $\epsilon$.

\begin{align*}
\lim\limits_{n\rightarrow \infty} P\left[|\hat{\theta}-\theta|\le \varepsilon\right] &= 1\\
\lim\limits_{n\rightarrow \infty} P\left[|\hat{\theta}-\theta|> \varepsilon\right] &= 0
\end{align*}

A consistent estimator may or may not be unbiased. The sample mean $\overline{X}=\frac{\Sigma X_i}{n}$ and sample proportion $\hat{p} = \frac{x}{n}$ are unbiased estimators of $\mu$ and $p$, respectively and are also consistent.

It means that as one collects more and more data, the estimator becomes more and more accurate in approximating the true population value.

An efficient estimator is less likely to produce extreme values, making it more reliable.

Efficiency

An unbiased estimator is said to be efficient if the variance of its sampling distribution is smaller than that of the sampling distribution of any other unbiased estimator of the same parameter. Suppose there are two unbiased estimators $T_1$ and $T_2$ of the sample parameter $\theta$, then $T_1$ will be said to be a more efficient estimator compared to the $T_2$ if $Var(T_1) < Var(T_2)$. The relative efficiency of $T_1$ compared to $T_2$ is given by the ration

$$E = \frac{Var(T_2)}{Var(T_1)} > 1$$

Note that when two estimators are biased then MSE is used to compare.

A more efficient estimator has a smaller sampling error, meaning it is less likely to deviate significantly from the true population parameter.

An efficient estimator is less likely to produce extreme values, making it more reliable.

Sufficiency

An estimator is said to be sufficient if the statistic used as an estimator utilizes all the information contained in the sample. Any statistic that is not computed from all values in the sample is not a sufficient estimator. The sample mean $\overline{X}=\frac{\Sigma X}{n}$ and sample proportion $\hat{p} = \frac{x}{n}$ are sufficient estimators of the population mean $\mu$ and population proportion $p$, respectively but the median is not a sufficient estimator because it does not use all the information contained in the sample.

A sufficient estimator provides us with maximum information as it is close to a population which is why, it also measures variability.

A sufficient estimator captures all the useful information from the data without any loss.

A sufficient estimator captures all the useful information from the data.

Invariance (Property of Love)

If the function of the parameter changes, the estimator also changes with some functional applications. This property is known as invariance.

\begin{align}
E(X-\mu)^2 &= \sigma^2 \\
\text{or } \sqrt{E(X-\mu)^2} &= \sigma\\
\text{or } [E(X-\mu)^2]^2 &= (\sigma^2)^2
\end{align}

The property states that if $\hat{\theta}$ is the MLE of $\theta$ then $\tau(\hat{\theta})$ is the MLE of $\tau(\hat{\theta})$ for any function. The Taw ($\tau$) is the general form of any function. for example $\theta=\overline{X}$, $\theta^2=\overline{X}^2$, and $\sqrt{\theta}=\sqrt{\overline{X}}$.

Properties of a Good Estimator

From the above diagrammatic representations, one can visualize the properties of a good estimator as described below.

  • Unbiasedness: The estimator should be centered around the true value.
  • Efficiency: The estimator should have a smaller spread (variance) around the true value.
  • Consistency: As the sample size increases, the estimator should become more accurate.
  • Sufficiency: The estimator should capture all relevant information from the sample.

In summary, regarding the properties of a good estimator, a good estimator is unbiased, efficient, consistent, and ideally sufficient. It should also be robust to outliers and have a low MSE.

Properties of a good estimator

https://rfaqs.com, https://gmstat.com

Probability Distributions MCQS 6

The post is about Probability distributions MCQs with Answers. There are 20 multiple-choice questions covering topics related to binomial, Poisson, exponential, normal, gamma, standard normal, hypergeometric, and bivariable distributions. Let us start with the quiz probability distributions MCQs with answers.

Online Multiple Choice Questions about Probability Distributions

1. If in a Gamma density, $k=1$ the Gamma density becomes

 
 
 
 

2. For a normal distribution, the measure of kurtosis equals to

 
 
 
 

3. Standard normal probability distribution has a mean equal to 40, whereas the value of random variable x is 80 and the z-statistic is equal to 1.8, the standard deviation of the standard normal probability distribution is

 
 
 
 

4. The continuous random variable $X$ has a gamma distribution with parameters $\alpha$ and $\beta$. The special gamma distribution for which $\alpha=\frac{v}{2}$ and $\beta=2$ where $v$ is a +ve integer is called.

 
 
 
 

5. Which of the following is NOT an assumption of the Binomial distribution?

 
 
 
 

6. Consider probability distribution as standard normal, if the value of $\mu$ is 75, the value of $x$ is 120 with an unknown standard deviation of distribution then the value of z-statistic

 
 
 
 

7. The normal distribution will be less spread out when

 
 
 
 

8. If $Mean = Variance$ the distribution is called

 
 
 
 

9. The area under the normal curve with $\mu\pm 2\sigma$ is

 
 
 
 

10. The maximum ordinate of the normal curve is at

 
 
 
 

11. If the value of $x$ is less than $\mu$ of standard normal probability distribution then the

 
 
 
 

12. In binomial distribution, the formula for calculating standard deviation is

 
 
 
 

13. If the value of $p$ is smaller or lesser than 0.5 then binomial distribution is classified as

 
 
 
 

14. Let $X$ be a positive random variable and let a new random variable $Y$ be defined as $Y=log X$. If $Y$ has a normal distribution then $X$ is

 
 
 
 

15. A bivariate normal distribution has a number of parameters in it

 
 
 
 

16. A bank received 2600 applications for a home mortgage. The probability of approval is 0.78 then the standard deviation of the binomial probability distribution is

 
 
 
 

17. The continuous Random variable $X$ has a gamma distribution with Parameters $\alpha$ and $\beta$. The special gamma distribution for which $\alpha = 1$ is called.

 
 
 
 

18. The moment generating function of Binomial distribution is

 
 
 
 

19. If $Mean > Variance$ then the distribution is

 
 
 
 

20. The number of products manufactured in a factory in a day is 3500 and the probability that some pieces are defective is 0.55 then the mean of the binomial probability distribution is

 
 
 
 

Probability Distributions MCQS with Answers

Probability Distributions MCQs Quiz with Answers
  • The number of products manufactured in a factory in a day is 3500 and the probability that some pieces are defective is 0.55 then the mean of the binomial probability distribution is
  • A bank received 2600 applications for a home mortgage. The probability of approval is 0.78 then the standard deviation of the binomial probability distribution is
  • Consider probability distribution as standard normal, if the value of $\mu$ is 75, the value of $x$ is 120 with an unknown standard deviation of distribution then the value of z-statistic
  • If the value of $x$ is less than $\mu$ of standard normal probability distribution then the
  • Standard normal probability distribution has a mean equal to 40, whereas the value of random variable x is 80 and the z-statistic is equal to 1.8, the standard deviation of the standard normal probability distribution is
  • In binomial distribution, the formula for calculating standard deviation is
  • If the value of $p$ is smaller or lesser than 0.5 then binomial distribution is classified as
  • The continuous Random variable $X$ has a gamma distribution with Parameters $\alpha$ and $\beta$. The special gamma distribution for which $\alpha = 1$ is called.
  • The continuous random variable $X$ has a gamma distribution with parameters $\alpha$ and $\beta$. The special gamma distribution for which $\alpha=\frac{v}{2}$ and $\beta=2$ where $v$ is a +ve integer is called.
  • For a normal distribution, the measure of kurtosis equals to
  • A bivariate normal distribution has a number of parameters in it
  • The moment generating function of Binomial distribution is
  • If $Mean > Variance$ then the distribution is
  • If $Mean = Variance$ the distribution is called
  • The area under the normal curve with $\mu\pm 2\sigma$ is
  • The maximum ordinate of the normal curve is at
  • Which of the following is NOT an assumption of the Binomial distribution?
  • The normal distribution will be less spread out when
  • Let $X$ be a positive random variable and let a new random variable $Y$ be defined as $Y=log X$. If $Y$ has a normal distribution then $X$ is
  • If in a Gamma density, $k=1$ the Gamma density becomes
https://itfeature.com probability distributions mcqs with answers

https://gmstat.com, https://rfaqs.com

Counting Techniques in Probability Statistics

The counting techniques in probability, statistics, mathematics, engineering, and computer science are essential tools. Counting Techniques in probability help in determining the number of ways a particular event can occur.

The following are the most common counting techniques in probability theory:

Factorial

For any integer $n$, $n$ factorial (denoted by $n!$) is the descending product beginning with $n$ and ending with 1. It can be written as

$$n! = n\times (n-1) \times (n-2) \times \cdots \times 2 \times 1$$

The example of factorial counting are:

  • $3! = 3\times 2\times 1 = 6$
  • $5! = 5\times 4\times 3! = 20 \times 6 = 120$
  • $10! = 10\times 9\times 8\times 7\times 6\times 5! = 3628800$

Note that a special definition is made for the case of $0!$, $0!=1$.

Permutations

A permutation of a group of objects is an ordered arrangement of the objects. The number of different permutations of a group of $n$ objects is $n!$. The formula of permutation is

$$P(n, r) = {}^nP_r = \binom{n}{r} = \frac{n!}{(n-r)!}$$

where $n$ is the total number of objects, and $r$ is the number of objects to be arranged.

The example of permutations are:

  • The number of ways of dealing with the cards of a standard deck in some order is $52! = 8.066\times 10^{67}$
  • Suppose, we want to place a set of five names in some order, there are five choices for which name to place first, then 4 choices of which to list second, 3 choices for third, 2 choices for fourth, and only one choice for the last (fifth one). Therefore, one can determine, how many different ways can 5 people be ordered in a row can be counted using the fundamental counting principle, the number of different ways to put 5 names in order is $5! = 5\times 4 \times 3\times 2\times 1 = 120$

Often entire set of objects is not required to be placed in order, usually one wants to compute how many ways a few chosen objects can be ordered. For example,

Example: A horse race has 14 horses, how many different possible ways can the top 3 horses finish?
Solution: There are 14 possibilities for which horse finishes first, 13 for second, and 12 for third. So, by the fundamental counting principle, there are $14\times 13\times 12 = 2184$ different possible ways (finishing orders) for the top three horses. $\binom{14}{3} = \frac{14!}{(14-3)!}=2184$.

In the above examples, permutations are called permutations of $n$ objects taken $r$ at a time.

Combinations

A combination is a selection of objects from a set without regard to order. Combinations are used when calculating the number of outcomes for experiments involving multiple choices, and often the order of the choices is not required. The formula of combination is

$$C(n, r) = {}^nC_r = \frac{n!}{r!(n-r)!}=\frac{{}^nP_r}{r!}$$

where $n$ is the total number of objects, and $r$ is the number of objects to be arranged without any regard to importance or order.

The example of combinations are:

  • Drawing a 5-card poker hand (${}^{52}C_5$)
  • Selecting a three-person committee from a group of 30 (without any priority or importance) (${}^{30}C_3$)

A choice of $r$ objects from a group of $n$ objects without regard to order is called a combination of $n$ objects taken $r$ at a time.

Example: In how many different ways can a committee of 3 people be chosen from a group of 10 people?

Solution: $C(10, 3) = \frac{10!}{3!(10-3)!} = 120 ways$

Counting Techniques in Probability

Multiplication Principle

If one event can occur $m$ times and another event occurs $n$ times, then the occurrence of the two events together can be computed using the multiplication principle, that is, by multiplying $m\times n$. For example, if there are 5 shirts and 3 pants to choose from, one can compute the different ways of outfits by multiplying the number of shirts and number of pants, i.e., $5 \times 3=15$, so there are 15 ways of outfits from 5 shirts and 3 pants.

Addition Principle

If one event can occur in $m$ ways and a second event can occur n $n$ ways, then one or the other event can occur in $m+n$ ways. For example, if there are 3 red balls and 4 blue balls, the number of was a ball can be chosen is: $4+3=7$.

Application of Counting Techniques in Probability

  • Probability: Calculating probabilities of events based on the number of favorable outcomes and the total number of possible outcomes.
  • Combinatorics: Studying the arrangement, combination, or selection of objects.
  • Computer Science: Analyzing algorithms and data structures.
  • Statistics: Sampling and hypothesis testing.
  • Cryptography: Designing secure encryption methods

FAQs about Counting Techniques in Probability

  1. What is meant by counting techniques?
  2. What are the applications of counting techniques in probability?
  3. Define permutations and combinations.
  4. What is the difference between the multiplication and addition principles?
  5. Give real-life examples of permutations and combinations.
  6. Write down the formulas of permutations and combinations.
https://itfeature.com counting Techniques in probability

https://gmstat.com, https://rfaqs.com

Basic Statistics MCQs with Answers 15

This post is about Basic Statistics MCQs with Answers. There are 20 multiple-choice questions from the construction of frequency distribution, cumulative frequency, class intervals, class boundaries, and class width. Let us start with Basic Statistics MCQs with Answers.

Please go to Basic Statistics MCQs with Answers 15 to view the test

Basic Statistics MCQs with Answers

Online Basic Statistics MCQs with Answers
  • The classification method in which the upper and lower limits of the interval are also in the class interval itself is called
  • General tables of data used to show data in an orderly manner are called as
  • Frequencies of all specific values of x and y variables with total calculated frequencies are classified as
  • A term used to describe frequency curve is
  • Distribution which shows a cumulative figure of all observations placed below the upper limit of classes in distribution is considered as
  • A distribution which requires the inclusion of open-ended classes is considered as
  • The type of cumulative frequency distribution in which class intervals are added in bottom-to-top order is classified as
  • The ‘less than type distribution’ and ‘more than type distribution’ are types of
  • The exclusive method and inclusive method are ways of classifying data on the basis of
  • The type of classification in which a class is subdivided into subclasses and subclasses are divided into more classes is considered as
  • Frequency distribution which is the result of cross-classification is called
  • The type of table in which study variables provide a large number of information with interrelated characteristics is classified as
  • Table in which data represented is extracted from some other data table is classified as
  • The class interval classification method which ensures data continuity is classified as
  • Which one of the following is the class frequency?
  • A complex type of table in which variables to be studied are subdivided with interrelated characteristics is called as
  • ‘less than type’ cumulative frequency distribution is considered as correspondence to
  • The type of classification in which a class is subdivided into subclasses and one attribute is assigned for statistical study is considered as
  • Cumulative frequency distribution which is the ‘greater than’ type is correspondent to
  • Simple classification and manifold classification are types of
Basic Statistics MCQs with Answers 15

https://rfaqs.com, https://gmstat.com