Heteroscedasticity Consistent Standard Errors

The post is about “Heteroscedasticity Consistent Standard Errors and Variances.

$\sigma_i^2$ are rarely known. However, there is a way of obtaining consistent estimates of variances and covariances of OLS estimators even if there is heteroscedasticity.

White’s Heteroscedasticity Consistent Standard Errors and Variances

White’s heteroscedasticity-corrected standard errors are known as robust standard errors. White’s heteroscedasticity-corrected standard errors are larger (maybe smaller too) than the OLS standard errors and therefore, the estimated $t$-values are much smaller (or maybe larger) than those obtained by the OLS.

Comparing the OLS output with White’s heteroscedasticity consistent standard errors (variances) may be useful to see whether heteroscedasticity is a serious problem in a particular set of data.

Plausible Assumptions about Heteroscedasticity Patterns

Assumption 1: The error variance is proportional to $X_i^2$

Heteroscedasticity Consistent standard errors and Variances

$$E(u_i^2)=\sigma^2 X_i^2$$
It is believed that the variance of $u_i$ is proportional to the square of the $X$ (in graphical methods or Park and Glejser approaches).

One may transform the original model as follows:

\begin{align}\label{assump1}
\frac{Y_i}{X_i} &=\frac{\beta_1}{X_i} + \beta_2 + \frac{u_i}{X_i} \nonumber \\
&=\beta_1 \frac{1}{X_i} + \beta_2 + v_i,\qquad \qquad (1)
\end{align}

where $v_i$ is the transformed disturbance term, equal to $\frac{u_i}{X_i}$. It can be verified that

\begin{align*}
E(v_i^2) &=E\left(\frac{u_i}{X_i}\right)^2\\
&=\frac{1}{X_i^2}E(u_i^2)=\sigma^2
\end{align*}

Hence, the variance of $v_i$ is now homoscedastic, and one may apply OLS to the transformed equation by regressing $\frac{Y_i}{X_i}$ on $\frac{1}{X_i}$.

Notice that in the transformed regression the intercept term $\beta_2$ is the slope coefficient in the original equation and the slope coefficient $\beta_1$ is the intercept term in the original model. Therefore, to get back to the original model multiply the estimated equation (1) by $X_i$.

Assumption 2: The Error Variance is Proportional to $X_i$

The square root transformation: $E(u_i^2) = \sigma^2 X_i$

Heteroscedasticity Consistent Variances

If it is believed that the variance of $u_i$ is proportional to $X_i$, then the original model can be transformed as

\begin{align*}
\frac{Y_i}{\sqrt{X_i}} &= \frac{\beta_1}{\sqrt{X_i}} + \beta_2 \sqrt{X_i} + \frac{u_i}{\sqrt{X_i}}\\
&=\beta_1 \frac{1}{\sqrt{X_i}} + \beta_2\sqrt{X_i}+v_i,\quad\quad (a)
\end{align*}

where $v_i=\frac{u_i}{\sqrt{X_i}}$ and $X_i>0$

$E(v_i^2)=\sigma^2$ (a homoscedastic situation)

One may proceed to apply OLS on equation (a), regressing $\frac{Y_i}{\sqrt{X_i}}$ on $\frac{1}{\sqrt{X_i}}$ and $\sqrt{X_i}$.

Note that the transformed model (a) has no intercept term. Therefore, use the regression through the origin model to estimate $\beta_1$ and $\beta_2$. To get back the original model simply multiply the equation (a) by $\sqrt{X_i}$.

Consider a case of $intercept = 0$, that is, $Y_i=\beta_2X_i+u_i$. The transformed model will be

\begin{align*}
\frac{Y_i}{\sqrt{X_i}} &= \beta_2 \sqrt{X_i} + \frac{u_i}{\sqrt{X_i}}\\
\beta_2 &=\frac{\overline{Y}}{\overline{X}}
\end{align*}

Here, the WLS estimator is simply the ratio of the means of the dependent and explanatory variables.

Assumption 3: The Error Variance is proportional to the Square of the Mean value of $Y$

$$E(u_i^2)=\sigma^2[E(Y_i)]^2$$

The original model is $Y_i=\beta_1 + \beta_2 X_i + u_I$ and $E(Y_i)=\beta_1 + \beta_2X_i$

The transformed model

\begin{align*}
\frac{Y_i}{E(Y_i)}&=\frac{\beta_1}{E(Y_i)} + \beta_2 \frac{X_i}{E(Y_i)} + \frac{u_i}{E(Y_i)}\\
&=\beta_1\left(\frac{1}{E(Y_i)}\right) + \beta_2 \frac{X_i}{E(Y_i)} + v_i, \quad \quad (b)
\end{align*}

where $v_i=\frac{u_i}{E(Y_i)}$, and $E(v_i^2)=\sigma^2$ (a situation of homoscedasticity).

Note that the transformed model (b) is inoperational as $E(Y_i)$ depends on $\beta_1$ and $\beta_2$ which are unknown. We know $\hat{Y}_i = \hat{\beta}_1 + \hat{\beta}_2X_i$ which is an estimator of $E(Y_i)$. Therefore, we proceed in two steps.

Step 1: Run the usual OLS regression ignoring the presence of heteroscedasticity problem and obtain $\hat{Y}_i$.

Step 2: Use the estimate of $\hat{Y}_i$ to transform the model as

\begin{align*}
\frac{Y_i}{\hat{Y}_i}&=\frac{\beta_1}{\hat{Y}_i} + \beta_2 \frac{X_i}{\hat{Y}_i} + \frac{u_i}{\hat{Y}_i}\\
&=\beta_1\left(\frac{1}{\hat{Y}_i}\right) + \beta_2 \frac{X_i}{\hat{Y}_i} + v_i, \quad \quad (c)
\end{align*}

where $v_i=\frac{u_i}{\hat{Y}_i}$.

Although $\hat{Y}_i$ is not exactly $E(Y_i)$, they are consistent estimates (as the sample size increases indefinitely; $\hat{Y}_i$ converges to true $E(Y_i)$). Therefore, the transformed model (c) will perform well if the sample size is reasonably large.

Assumption 4: Log Transformation

A log transformation

$$ ln Y_i = \beta_1 + \beta_2 ln X_i + u_i \tag*{log model-1}$$ usually reduces heteroscedasticity when compared to the regression $$Y_i=\beta_1+\beta_2X_i + u_i $$

It is because log transformation compresses the scales in which the variables are measured, by reducing a tenfold (دس گنا) difference between two values to a twofold (دگنا) difference. For example, 80 is 10 times the number 8, but ln(80) = 4.3280 is about twice as large as ln(8) = 2.0794.

By taking the log transformation, the slope coefficient $\beta_2$ measures the elasticity of $Y$ concerning $X$ (that is, the percentage change in $Y$ for the percentage change in $X$).

If $Y$ is consumption and $X$ is income in the model (log model-1) then $\beta_2$ measures income elasticity, while in the original model (model without any transformation: OLS model), $\beta_2$ measures only the rate of change of mean consumption for a unit change in income.

Note that the log transformation is not applicable if some of the $Y$ and $X$ values are zero or negative.

Note regarding all assumptions about the nature of heteroscedasticity, we are essentially speculating (سوچنا، منصوبہ بنانا) about the nature of $\sigma_i^2$.

  • There may be a problem of spurious correlation. For example, in the model $$Y_i = \beta_1+\beta_2X_i + u_i,$$ the $Y$ and $X$ variables may not be correlation but in transformed model $$\frac{Y_i}{X_i}=\beta_1\left(\frac{1}{X_i}\right) + \beta_2,$$ the $\frac{Y_i}{X_i}$ and $\frac{1}{X_i}$ are often found to be correlated.
  • $\sigma_i^2$ are not directly known, we estimate them from one or more of the transformations. All testing procedures are valid only in large samples. Therefore, be careful in interpreting the results based on the various transformations in small or finite samples.
  • For a model with more than one explanatory variable, one may not know in advance, which of the $X$ variables should be chosen for transforming data.

Read more about Heteroscedasticity and Homoscedasticity on Wikipedia

Heteroscedasticity Consistent Standard Errors

Heteroscedasticity in Regression

Learn R Programming Language

Remedial Measures of Heteroscedasticity (2018)

The post is about Remedial Measures of Heteroscedasticity.

Heteroscedasticity is a condition in which the variance of the residual term, or error term, in a regression model, varies widely.

The heteroscedasticity does not destroy the unbiasedness and consistency properties of the OLS estimator (as OLS estimators remain unbiased and consistent in the presence of heteroscedasticity), but they are no longer efficient, not even asymptotically. The lack of efficiency makes the usual hypothesis testing procedure dubious (مشکوک، غیر معتبر). Therefore, there should be some remedial measures for heteroscedasticity.

Homoscedasticity

Remedial Measures of Heteroscedasticity

For remedial measures of heteroscedasticity, there are two approaches: (i) when $\sigma_i^2$ is known, and (ii) when $\sigma_i^2$ is unknown.

(i) $\sigma_i^2$ is known

Consider the simple linear regression model $Y_i=\alpha + \beta X_i + u_i$.

If $V(u_i)=\sigma_i^2$ then heteroscedasticity is present. Given the values of $\sigma_i^2$, heteroscedasticity can be corrected by using weighted least squares (WLS) as a special case of Generalized Least Squares (GLS). Weighted least squares is the OLS method of estimation applied to the transformed model.

When heteroscedasticity is detected by any appropriate statistical test, then the appropriate solution is to transform the original model in such a way that the transformed disturbance term has a constant variance. The transformed model reduces the adjustment of the original data. The transformed error term $u_i$ has a constant variance i.e. homoscedastic. Mathematically

\begin{eqnarray*}
V(u_i^*)&=&V\left(\frac{u_i}{\sigma_i}\right)\\
&=&\frac{1}{\sigma_i^2}Var(u_i)\\
&=&\frac{1}{\sigma_i^2}\sigma_i^2=1
\end{eqnarray*}

This approach has limited use as the individual error variances are not always known a priori. In case of significant sample information, reasonable guesses of the true error variances can be made and be used for $\sigma_i^2$.

Let us discuss the second remedy of heteroscedasticity from remedial measures of heteroscedasticity.

(ii) $\sigma_i^2$ is unknown

If $\sigma_i^2$ is not known a priori, then heteroscedasticity is corrected by hypothesizing a relationship between the error variance and one of the explanatory variables. There can be several versions of the hypothesized relationship. Suppose the hypothesized relationship is $Var(u)=\sigma^2 X_i^2$ (error variance is proportional to $X_i^2$). For this hypothesized relation we will use the following transformation to correct for heteroscedasticity for the following simple linear regression model $Y_i =\alpha + \beta X_i +u_i$.
\begin{eqnarray*}
\frac{Y_i}{X_i}&=&\frac{\alpha}{X_i}+\beta+\frac{u_i}{X_i}\\
\Rightarrow \quad Y_i^*&=&\beta +\alpha_i^*+u_i^*\\
\mbox{where } Y_i^*&=&\frac{Y_i}{X_i}, \alpha_I^*=\frac{1}{X_i} \mbox{and  } u_i^*=\frac{u}{X_i}
\end{eqnarray*}

Now the OLS estimation of the above transformed model will yield the efficient parameter estimates as $u_i^*$’s have constant variance. i.e.

\begin{eqnarray*}
V(u_i^*)&=&V(\frac{u_i}{X_i})\\
&=&\frac{1}{X_i^2} V(u_i^2)\\
&=&\frac{1}{X_i^2}\sigma^2X_i^2\\
&=&\sigma^2=\mbox{ Constant}
\end{eqnarray*}

Remedial Measures of Heteroscedasticity (2018)

For remedial measures of heteroscedasticity, some other hypothesized relations are:

  • Error variance is proportional to $X_i$ (Square root transformation) i.e $E(u_i^2)=\sigma^2X_i$
    The transformed model is
    \[\frac{Y_i}{\sqrt{X_i}}=\frac{\alpha}{\sqrt{X_i}}+\beta\sqrt{X_i}+\frac{u_i}{\sqrt{X_i}}\]
    It (the transformed model) has no intercept term. Therefore we have to use the regression through the origin model to estimate $\alpha$ and $\beta$. To get the original model, multiply $\sqrt{X_i}$ with the transformed model.
  • Error Variance is proportional to the square of the mean value of $Y$. i.e. $E(u_i^2)=\sigma^2[E(Y_i)]^2$
    Here the variance of $u_i$ is proportional to the square of the expected value of $Y$, and $E(Y_i)$ = \alpha + \beta X_i$.
    The transformed model will be
    \[\frac{Y_i}{E(Y_i)}=\frac{\alpha}{E(Y_i)}+\beta\frac{X_i}{E(Y_i)}+\frac{u_i}{E(Y_i)}\]
    This transformation is not appropriate because $E(Y_i)$ depends upon $\alpha$ and $\beta$ which are unknown parameters. $\hat{Y_i}=\hat{\alpha}+\hat{\beta}$ is an estimator of $E(Y_i)$, so we will proceed in two steps:
     
    1. We run the usual OLS regression dis-regarding the heteroscedasticity problem and obtain $\hat{Y_i}$
    2. We will transform the model by using estimated $\hat{Y_i}$ i.e. $\frac{Y_i}{\hat{Y_i}}=\alpha\frac{1}{\hat{Y_i}}+\beta_1\frac{X_i}{\hat{Y_i}}+\frac{u_i}{\hat{Y_i}}$ and run the regression on transformed model.

      This transformation will perform satisfactory results only if the sample size is reasonably large.

  • Log transformation such as $ln\, Y_i = \alpha + \beta\, ln\, X_i + u_i$.
    Log transformation compresses the scales in which the variables are measured. However, this transformation is not applicable in some of the $Y$ and $X$ values that are zero or negative.

Visit: R Language Frequently Asked Questions

Heteroscedasticity Tests and Remedies (2018)

The post is about Heteroscedasticity Tests and Remedies of Heteroscedasticity.

There is a set of heteroscedasticity tests and remedies that require an assumption about the structure of the heteroscedasticity if it exists. That is, to use these tests you must choose a specific functional form for the relationship between the error variance and the variables that you believe determine the error variance. The major difference between these tests is the functional form that each test assumes.

Heteroscedasticity Tests

Breusch-Pagan Test

The Breusch-Pagan test assumes the error variance is a linear function of one or more variables.

Harvey-Godfrey Test

The Harvey-Godfrey test assumes the error variance is an exponential function of one or more variables. The variables are usually assumed to be one or more of the explanatory variables in the regression equation.

The White Test

The white test of heteroscedasticity is a general test for the detection of heteroscedasticity existence in the data set. It has the following advantages:

  1. It does not require you to specify a model of the structure of the heteroscedasticity if it exists.
  2. It does not depend on the assumption that the errors are normally distributed.
  3. It specifically tests if the presence of heteroscedasticity causes the OLS formula for the variances and the covariances of the estimates to be incorrect.

Remedies for Heteroscedasticity

Suppose that you find the evidence of existence of heteroscedasticity. If you use the oLS estimator, you will get unbiased but inefficient estimates of the parameters of the model. Also, the estimates of the variances and covariances of the parameter estimates will be biased and inconsistent, and as a result, hypothesis tests will not be valid. When there is evidence of heteroscedasticity, econometricians do one of the two things:

  • Use the OLS estimator to estimate the parameters of the model. Correct the estimates of the variances and covariances of the OLS estimates so that they are consistent.
  • Use an estimator other than the OLS estimator to estimate the parameters of the model.
Heteroscedasticity Tests

Many econometricians choose the first alternative. This is because the most serious consequence of using the OLS estimator when there is heteroscedasticity is that the estimates of the variances and covariances of the parameter estimates are biased and inconsistent. If this problem is corrected, then the only shortcoming of using OLS is that you lose some precision relative to some other estimator that you could have used.

Heteroscedasticity Pattern, Tests, and Remedy

However, to get more precise estimates with an alternative estimator, you must know the approximate structure of the heteroscedasticity. If you specify the wrong model of heteroscedasticity, then this alternative estimator can yield estimates that are worse than the OLS

Learn R Programming Language