Partial Correlation Example

In this post, we will learn about Partial Correlation and will perform on a data as Partial Correlation Example. In multiple correlations there are more than 2 variables, (3 variables and above) also called multivariable, in partial correlation there involved 3 or more variables, partial correlation is defined as the degree of the linear relationship between any two variables, in a set of multivariable data, by keeping the effect of all other variables as a constant.

Partial Correlation Formula

For three variables say $X_1, X_2, X_3$ then the partial correlation measures the relation between $X_1$ and $X_2$ by removing the influence of $X_3$ is the partial correlation $X_1$ and $X_2$. And is given as

$$r_{12 \cdot 3}= \frac{ r_{12} – r_{13} r_{23}} {\sqrt{(1-r_{13}^2)(1- r_{23}^2)} }$$

If we want to find the partial correlation between $X_1$ and $X_3$ then

$$r_{13\cdot 2}= \frac{ r_{13} – r_{12} r_{32}}{ \sqrt{(1- r_{12}^2)(1- r_{32}^2)}}$$

If we want to find the partial correlation between $X_2$ and $X_3$ then

$$r_{23\cdot 1}= \frac{r_{23} – r_{21} r_{31}}{\sqrt{(1- r_{21}^2)(1- r_{31}^2)}}$$

Partial Correlation Graphical Representation

Partial correlation is a statistical measure of relationship between two variables while controlling for (excluding or eliminating) the effects of one or more additional variables. For three variables, say $X, Y,$ and $Z$ is

Partial Correlation Example

Partial Correlation is used when researchers want to determine the strength and direction of relationship between two variables without the influence of other variables. This is particularly useful in multivariate analysis where multiple variables may be interrelated. The partial correlation coefficient ranges from $-1$ to $+1$, with $-1$ indicating a perfect negative correlation, $+1$ indicating a perfect positive correlation, and 0 indicating no correlation.

Partial Correlation Example

For Partial Correlation Example, consider the following data with some basic computation.

$X_1$$X_2$$X_3$$X_1X_2$$X_1X_3$$X_2X_3$$X_1^2$$X_2^2$$X_3^2$
741287449161
1272842414144494
148411256321966416
179515385452898125
201282401609640014464
Total7040206173321911078354110

First compute $r_{21}, r_{13}, r_{23}, r_{12}, r_{31}$, and $r_{32}$.

\begin{align}
r_{12} &= \frac{n\Sigma (x_1 x_2 ) – (\Sigma x_1)(\Sigma x_2 )} {\sqrt{\left[n\Sigma x_1 ^2 -(\Sigma x_1)^2\right] \left[n \Sigma x_2^2 – (\Sigma x_2 )^2\right]}}\\
&= \frac{5(617)-(70)(40)} {\sqrt{\left[5 (1078)-(70)^2\right]\left[5(354)-(40)^2\right]} } = 0.987\\
r_{13} &= \frac{n\Sigma(x_1 x_3 ) – (\Sigma x_1)(\Sigma x_3 )}{\sqrt{\left[n\Sigma x_1^2 – (\Sigma x_1 )^2\right]\left[n \Sigma x_3^2 – (\Sigma x_3 )^2\right]}}\\
&= \frac{5(332)-(70)(20)}{\sqrt{\left[5 (1078)-(70)^2\right]\left[5(110)-(20)^2\right]}}= 0.959\\
r_{23} &= \frac{n\Sigma(x_2 x_3 )-(\Sigma x_2 )(\Sigma x_3 )}{\sqrt{\left[n\Sigma x_2^2 -(\Sigma x_2 )^2\right]\left[n\Sigma x_3^2 -(\Sigma x_3 )^2\right]}}\\
& = \frac{5(191)-(40)(20)}{\sqrt{\left[5(354)-40^2\right]\left[5(110)-20^2\right]}}= 0.971\\
r_{12\cdot 3} &= \frac{r_{12} – r_{13} r_{23} } {\sqrt{(1 – r_{13}^2) (1 – r_{23}^2) }}\\
& = \frac{0.987-(0.959)(0.971)} {\sqrt{(1-(0.959)^2)(1-(0.971)^2)}}\\
&=\frac{0.05659}{0.0681} = 0.8305
\end{align}

Partial correlation is commonly used in statistical analysis, especially in fields like psychology, social sciences, and any area where multivariate relationships are analyzed.

https://rfaqs.com

Leave a Comment

Discover more from Statistics for Data Analyst

Subscribe now to keep reading and get access to the full archive.

Continue reading