Logistic regression Introduction

Logistic regression was introduced in the 1930s by Ronald Fisher and Frank Yates and was first proposed in 1970s as an alternative technique to overcome limitations of ordinary least square regression in handling dichotomous outcomes. It is a type of probabilistic statistical classification model which is a non-linear regression model, can be converted into a linear model by using a simple transformation. It is used to predict a binary response categorical dependent variable, based on one or more predictor variables. That is, it is used in estimating empirical values of the parameters in a model. Here response variable assumes a value as zero or one i.e. dichotomous variable. It is the regression model of b, a logistic regression model is written as

  \[\pi=\frac{1}{1+e^{-[\alpha +\sum_{i=1}^k \beta_i X_{ij}]}}\]

where $\alpha$ and $\beta_i$ are the intercept and slope respectively.

So in simple words, logistic regression is used to find the probability of the occurrence of the outcome of interest.  For example, if we want to find the significance of the different predictors (gender, sleeping hours, took part in extracurricular activities, etc.), on a binary response (pass or fail in exams coded as 0 and 1), for this kind of problems we used logistic regression.

By using a transformation this nonlinear regression model can be easily converted into a linear model. As $\pi$ is the probability of the events in which we are interested so if we take the ratio of the probability of success and failure then the model becomes a linear model.

\[ln(y)=ln(\frac{\pi}{1-\pi})\]

The natural log of odds can convert the logistics regression model into a linear form.

References:

Muhammad Imdad Ullah

Currently working as Assistant Professor of Statistics in Ghazi University, Dera Ghazi Khan. Completed my Ph.D. in Statistics from the Department of Statistics, Bahauddin Zakariya University, Multan, Pakistan. l like Applied Statistics, Mathematics, and Statistical Computing. Statistical and Mathematical software used is SAS, STATA, GRETL, EVIEWS, R, SPSS, VBA in MS-Excel. Like to use type-setting LaTeX for composing Articles, thesis, etc.

You may also like...

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

x Logo: Shield Security
This Site Is Protected By
Shield Security