# Checking Normality of the Error Term

Normality of the Error Term

In multiple linear regression models, the sum of squared residuals (SSR) is divided by $n-p$ (degrees of freedom, where $n$ is the total number of observations, and $p$ is the number of the parameter in the model) is a good estimate of the error variance. In the multiple linear regression model, the residual vector is

\begin{align*}
e &=(I-H)y\\
&=(I-H)(X\beta+e)\\
&=(I-H)\varepsilon
\end{align*}

where $H$ is the hat matrix for the regression model.

Each component $e_i=\varepsilon – \sum\limits_{i=1}^n h_{ij} \varepsilon_i$. Therefore, In multiple linear regression models, the normality of the residual is not simply the normality of the error term.

Note that:

$Cov(\mathbf{e})=(I-H)\sigma^2 (I-H)’ = (I-H)\sigma^2$

We can write $Var(e_i)=(1-h_{ii})\sigma^2$.

If the sample size ($n$) is much larger than the number of the parameters ($p$) in the model (i.e. $n > > p$), in other words, if sample size ($n$) is large enough, $h_{ii}$ will be small as compared to 1, and $Var(e_i) \approx \sigma^2$.

In multiple regression models, a residual behaves like an error if the sample size is large. However, this is not true for a small sample size.

It is unreliable to check the normality of error term assumption using residuals from multiple linear regression models when the sample size is small. 