Split Plot Design

The design in which the levels of one factor can be applied to large experimental units and the levels of other factors to the sub-units are known as “split plot design“.

A split plot experiment is a blocked experiment in which blocks serve as experimental units. After blocking the levels of other factors are randomly applied to large units within blocks, often called whole plots or main plots.

The split plot design are specifically suited for two factors designs that have more treatment to be accommodated by a complete block designs. In split plot design all the factors are not of equal importance. For example, in an experiment of varieties and fertilizers, the variety is less important and the fertilizer is more important.

In these design, the experimental units are divided into two parts, (i) Main plot and (ii) sub-plot. The levels of one factor are assigned at random to large experimental units (main plot) and the levels of the other (second) factor are applied at random the the sub-units (sub-plot) within the large experimental units. The sub-units are obtained by dividing the large experimental units.

Note that the assignment of a particular factor to either the main plot or to the subplot is extremely important, it is because the plot size and precision of measurement of the effects are not the same for both factors.

The sub-plot treatments are the combination of the levels of different factors.

The split plot design involves assigning the levels of one factor to main plots which may be arranged in a “CRD”, “RCBD” or “LSD”. The levels of the other factor are assigned to subplots within each main plot.

Split Plot Design Layout Example

If there are 3 varieties and 3 fertilizers and we want more precision for fertilizers then with the RCBD with 3 replication, the varieties are assigned randomly to the main plots within 3 blocks using a separate randomization for each. Then the levels of the fertilizers are randomly assigned to the subplots within the main plots using a separate randomization in each main plot. The layout is

Split Plot Design

Another Split Plot Design Example

Suppose we want to study the effects of two irrigation methods (factor 1) and two different fertilizer types (factor 2) on four different fields (“whole plots”). While a field can easily be split into two for the two different fertilizers, the field cannot easily be split into two for irrigation: One irrigation system normally covers a whole field and the systems are expensive to replace.

Split Plot Design Example

Advantages and Disadvantages of Split Plot Design

Advantages of Split Plot Design

  • More Practical
    Randomizing hard-to-change factors in groups, rather, than randomizing every run, is much less labor and time intensive.
  • Pliable
    Factors that naturally have large experimental units can be easily combined with factors having smaller experimental units.
  • More powerful
    Tests for the subplot effects from the easy-to-change factors generally have higher power due to partitioning the variance sources.
  • Adaptable
    New treatments can be introduced to experiments that are already in progress.
  • Cheaper to Run
    In case of a CRD, implementing a new irrigation method for each subplot would be extremely expensive.
  • More Efficient
    Changing the hard-to-change factors causes more error (increased variance) than changing the easy-to-change factors a split-plot design is more precise (than a completely randomized run order) for the subplot factors, subplot by subplot interactions and subplot by whole-plot interactions.
  • Efficient
    More efficient statistically, with increased precision. It permits efficient application of factors that would be difficult to apply to small plots.
  • Reduced Cost
    They can reduce the cost and complexity of manipulating factors that are difficult or expensive to change.
  • Precision
    The overall precision of split-plot design relative to the randomized complete block design may be increased by designing the main plot treatment in a Latin square design or in an incomplete Latin square design.

Disadvantages of Split Plot Design

  • Less powerful
    Tests for the hard-to-change factors are less powerful, having a larger variance to test against and fewer changes to help overcome the larger error.
  • Unfamiliar
    Analysis requires specialized methods to cope with partitioned variance sources.
  • Different
    Hard-to-change (whole-plot) and easy-to-change (subplot) factor effects are tested against different estimated noise. This can result in large whole-plot effects not being statistically significant, whereas small subplot effects are significant even though they may not be practically important.
  • Precision
    Differential in the estimation of interaction and the main effects.
  • Statistical Analysis
    Complicated statistical analysis.
  • Sources of Variation
    They involve different sources of variation ad error for each factor.
  • Missing Data
    When missing data occurs, the analysis is more complex than for a randomized complete block design.
  • Different treatment comparisons have different basic error variances which make the analysis more complex than with the randomized complete block design, especially if some unusual type of comparison is being made.
Design of Experiment

https://rfaqs.com

https://gmstat.com

Layout of the Factorial Design: Two Factor $2^2$ (2024)

The layout of a factorial design is typically organized in a table format. Each row of the table represents an experimental run, while each column represents a factor or the response variable. The levels of factors are indicated by symbols such as + and – for high and low levels, respectively. The response variable values corresponding to each experimental condition are recorded in the form of a sign table.

Consider a simple example layout for a two-factor factorial design with factors $A$ and $B$.

RunFactor AFactor BResponse
1$Y_1$
2+$Y_2$
3+$Y_3$
4++$Y_4$

Layout of the Factorial Design: Two Factor in $n$ Replicates

Consider there are two factors and each factor has two levels in $n$ replicates. The layout of the factorial design will be as described below for $n$ replicates.

Layout for the factorial design Two Factor Two Level

$y_{111}$ is the response from the first factor at the low level, the second factor at the low level, and the first replicate of the trial. Similarly, $y_{112}$ represents the second replicate of the same trial, and up to $n$th observation is $n$th trial at the same level of $A$ and $B$.

Geometrical Structure of Two-Factor Factorial Design

The geometrical structure of two factors (Factor $A$ and $B$), each factor has two levels, low ($-$) and high (+). Response 1 is at the low level of $A$ and a low level of $B$, similarly, response 2 is produced at a high level of $A$ and a low level of $B$. The third response is at a low level of $A$ and a high level of $B$, similarly, the 4th response is at a high level of $A$ and a high level of $B$.

Geometrical Structure of two Factor Layout of Factorial Experiment

Real Life Example

The concentration of reactant vs the amount of the catalyst produces some response, the experiment has three replicates.

Layout of Two Factors Real Life Example

Geometrical Structure of the Example

Layout of the Factorial Design: Two Factor $2^2$ (2024)

Factor Effects

\begin{align} A &=\frac{(a+ab)-((I) +b)}{2} = \frac{100+90-80-60}{2} = 25\\
B &= \frac{(b+ab) – ((I) +a) }{2} = \frac{60+90-80-100}{2} = -15\\
AB&=\frac{((I)+ab)-(a+b)}{2} = \frac{80+90-100-60}{2}=5
\end{align}

Minus 15 ($-15$) is the effect of $B$, which shows the change in factor level from low to high bringing on the average $-15$ decrease in the response.

Reference

Montgomery, D. C. (2017). Design and Analysis of Experiments. 9th ed, John Wiley & Sons.

R and Data Analysis

Test Preparation MCQs

What is Factor Effects of $2^2$ Design (2024)

The smallest case of a $2^K$ factorial experiment is one in which 2 factors are of interest and each factor has two levels. This design is known as a $2^2$ factorial design. We are interested in Factor effects or Effects of Factors.

The level of the factors (say $a$' and$b$’) may be called the low and high or presences and absences.

In a factorial design, in each complete trial (or replicate of the experiment), all possible combinations of the levels of the factors are investigated. For example, if Factor-A has $a$'' levels and Factor-B has$b$” levels, then each replicate contains all “$ab$” treatment combinations. Two factors each at 2 levels are:

Factors Effects Factors at Level 2

Factor Effects (or Effect of Factors)

A change in the quantity of response due to the change in the level of a factor is called the effect of that factor. Here we mean average effect.

Main Effects

A main effect of a factor is defined as a measure of the average change in effect produced by changing the level of the factor. It is measured independently from the effect of other factors. The main effect is the effect of the factor only. Main effects are sometimes regarded as an interaction of zero order. Frequently, the main effect refers to the primary factors of interest in the experiment.

Interaction Effects

Factors are said to interact when they are not independent. Interaction in a factorial experiment is a measure of the extent to which the effect of changing the levels of one or more factors depends on the levels of the other factors. Interactions between two factors are referred to as first-order interactions, those concerning three factors, as second-order interactions, and so on.

Example: Consider a two-factor factorial experiment. Consider an investigation into the effect of the concentration of reactant (Factor $A$) and the presence of catalysts on the reaction time of the chemical process (Factor $B$).

Factor Effects

Solution of Example

Main Effects

\begin{align}
\text{Main effect of A} & = \text{Average response at high level of $A$} – \text{Average response at low level of $A$}\\
&=\frac{45+60}{2}-\frac{20+35}{2}=25
\end{align}

The results indicate that Increasing Factor-A from the low level to the high level causes an average response increase of 25 units.

\begin{align}
\text{Main effect of B}&=\text{Average response at high level of $B$} -\text{ Average response at low level of $B$}\\
&=\frac{35+60}{2}-\frac{20+45}{2}=15
\end{align}

Increasing Factor B from the low level to the high level causes an average response increase of 15 units.

Effect of AB Interaction

It is possible that the difference in response between the levels of a factor is not the same at all levels of the other factor(s), then there is an interaction between the factors. Consider

Factor Effects with Interaction

\begin{align}
\text{The effect of Factor $A$ (at low level of Factor $B$)} &= 50 – 20 = 30\\
\text{The effect of Factor $A$ (at high level of Factor $B$)}&= 15 – 40 = -25\\
\text{The effect of Factor $B$ (at low level of Factor $A$)} &= 40 – 20 = 20\\
\text{The effect of Factor $B$ (at high level of Factor $B$)} &= 15 – 50 = -35
\end{align}

Because the effect of Factor-$A$ depends on the level chosen for Factor-$B$, we see that there is interaction between $A$ and $B$. One can computer Effect of $AB$ interaction as described below:

Effect of AB Interaction
= Average difference between effect of $A$ at high level of $B$ and the effect of $A$ at low level of $B$.

The magnitude of the interaction effect is the average difference in these two A effects, or $AB=\frac{-25-30}{2}=\frac{-55}{2}$.

OR

= Average difference between effect of $B$ at high level of $A$ and the effect of $B$ at low level of $A$.

The magnitude of the interaction effect is the average difference in these two B effects, or $AB = \frac{-35-20}{2} = \frac{-55}{2}$.

The interaction is large in this experiment.

Computer MCQs Test Online

R Programming Language

Factorial Experiment Advantages and Disadvantages

The Factorial Experiment advantages and disadvantages over One-Factor-at-a-time Experiment.

Factorial Experiment Advantages

  • Required Less Number of Observations
    Let $A$ and $B$ be two factors. The information on a factor can be obtained by varying that factor and keeping the other factor fixed.
Factorial Experiment Advantages


Effect of changing factor $A = A_2 B_1 – A_1B_1$

Effect of changing factor $B = A_1B_2 – A _1 B_1$

Three treatment combinations are used for two effects for error estimation we need two replicates so six observations are needed.

In the case of factorial experiments, one more combination $A_2B_2$ is utilized and we get:

Two estimates of $A$ are: $=A_2B_1 – A_1B_1 \qquad \text{ and } \qquad =A_2B_2 – A_1B_2$

Two estimates of $B$ are: $=A_1B_2 – A_1B_1 \qquad \text{ and } \qquad =A_2B_2 – A_2B_1$
Thus, by using four observations we can get the estimates of the same precision under a factorial experiment.

  • More Relative Efficiency
    In the case of two factors the relative efficiency of factorial design to one-factor-at-a-time experimental design is $\frac{6}{4}=1.5$
    This relative efficiency increases with the increase of the number of factors.
  • Necessary When Interaction is Present
    When using a one-factor-at-a-time design and the response of $A_1B_2$ and $A_2B_1$ is better than $A_1B_1$, an experimenter logically concludes that the response of $A_2B_2$ would be even better than $A_1B_1$. Whereas, $A_2B_2$ is available in factorial design.
  • Versatility
    Factorial designs are more versatile in computing effects. These designs provide a chance to estimate the effect of a factor at several levels of the other factor.

Factorial Experiment Advantages in simple words

The factorial Experiment Advantages without any statistical formula or symbol are:

  • A factorial experiment is usually economical.
  • All the experimental units are used in computing the main effects and interactions.
  • The use of all treatment combinations makes the experiment more efficient and comprehensive.
  • The interaction effects are easily estimated and tested through the usual analysis of variance.
  • The experiment yields unbiased estimates of effects, which are of wider applicability.

Factorial Experiments Disadvantages

  • A factorial experiment requires an excessive amount of experimentation when there are several factors at several levels. For example, for 8 factors, each factor at 2 levels, there will be 256 combinations. Similarly, for 7 factors each at 3 levels, there will be 2187 combinations.
  • A large number of combinations when used decrease the efficiency of the experiment. The experiment may be reduced to a manageable size by confounding some effects considered of little practical consequence.
  • The experiment setup and the resulting statistical analysis are more complex.
MCQs DOE

Computer MCQs Online Test

R and Data Analysis