Layout of the Factorial Design: Two Factor $2^2$ (2024)

The layout of a factorial design is typically organized in a table format. Each row of the table represents an experimental run, while each column represents a factor or the response variable. The levels of factors are indicated by symbols such as + and – for high and low levels, respectively. The response variable values corresponding to each experimental condition are recorded in the form of a sign table.

Consider a simple example layout for a two-factor factorial design with factors $A$ and $B$.

RunFactor AFactor BResponse
1$Y_1$
2+$Y_2$
3+$Y_3$
4++$Y_4$

Layout of the Factorial Design: Two Factor in $n$ Replicates

Consider there are two factors and each factor has two levels in $n$ replicates. The layout of the factorial design will be as described below for $n$ replicates.

Layout for the factorial design Two Factor Two Level

$y_{111}$ is the response from the first factor at the low level, the second factor at the low level, and the first replicate of the trial. Similarly, $y_{112}$ represents the second replicate of the same trial, and up to $n$th observation is $n$th trial at the same level of $A$ and $B$.

Geometrical Structure of Two-Factor Factorial Design

The geometrical structure of two factors (Factor $A$ and $B$), each factor has two levels, low ($-$) and high (+). Response 1 is at the low level of $A$ and a low level of $B$, similarly, response 2 is produced at a high level of $A$ and a low level of $B$. The third response is at a low level of $A$ and a high level of $B$, similarly, the 4th response is at a high level of $A$ and a high level of $B$.

Geometrical Structure of two Factor Layout of Factorial Experiment

Real Life Example

The concentration of reactant vs the amount of the catalyst produces some response, the experiment has three replicates.

Layout of Two Factors Real Life Example

Geometrical Structure of the Example

Layout of the Factorial Design: Two Factor $2^2$ (2024)

Factor Effects

\begin{align} A &=\frac{(a+ab)-((I) +b)}{2} = \frac{100+90-80-60}{2} = 25\\
B &= \frac{(b+ab) – ((I) +a) }{2} = \frac{60+90-80-100}{2} = -15\\
AB&=\frac{((I)+ab)-(a+b)}{2} = \frac{80+90-100-60}{2}=5
\end{align}

Minus 15 ($-15$) is the effect of $B$, which shows the change in factor level from low to high bringing on the average $-15$ decrease in the response.

Reference

Montgomery, D. C. (2017). Design and Analysis of Experiments. 9th ed, John Wiley & Sons.

R and Data Analysis

Test Preparation MCQs

Leave a Comment

Discover more from Statistics for Data Analyst

Subscribe now to keep reading and get access to the full archive.

Continue reading