White General Heteroscedasticity Test (Numerical) 2021

One important assumption of Regression is that the variance of the Error Term is constant across observations. If the error has a constant variance, then the errors are called homoscedastic, otherwise heteroscedastic. In the case of heteroscedastic errors (non-constant variance), the standard estimation methods become inefficient. Typically, to assess the assumption of homoscedasticity, residuals are plotted.

Read about Heteroscedasticity Consequences in detail.

white general heteroscedasticity test https://itfeature.com

We will consider the following data, to test the presence of heteroscedasticity using White General Heteroscedasticity test.

IncomeEducationJob Experience
529
9.7418
28.4821
8.8812
21814
26.61016
25.41216
23.1129
22.51218
19.5125
21.7127
24.8139
30.11412
24.81417
28.51519
26156
38.91617
22.1161
33.11710
48.32117

White General Heteroscedasticity Test

To perform the White General Heteroscedasticity test, the general procedure is

Step 1: Run a regression and obtain $\hat{u}_i$ of this regression equation.

The regression model is: $income = \beta_1+\beta_2\, educ + \beta_3\, jobexp + u_i$

The Regression results are: $Income_i=-7.09686 + 1.93339 educ_{i} + 0.649365 jobexp_{i}$

Step 2: Run the following auxiliary regression

$$\hat{u}_i^2=\alpha_1+\alpha_2X_{2i}+\alpha_3 X_{3i}+\alpha_4 X_{2i}^2+\alpha_5X_{3i}^2+\alpha_6X_{2i}X_{3i}+vi $$

that is, regress the squared residuals on a constant, all the explanatory variables, the squared explanatory variables, and their respective cross-product.

Here in auxiliary regression education, $Y$ is income, $X_2$ is educ, and $X_3$ is jobexp.

The results from auxiliary regression are:

$$Y=42.6145  -0.10872\,X_{2i} – 5.8402\, X_{3i} -0.15273\, X_{2i}^2 + 0.200715\, X_{3i}^2 + 0.226517\,X_{2i}X_{3i}$$

Step 3: Formulate the null and alternative hypotheses

$H_0: \alpha_1=\alpha_2=\cdots=\alpha_p=0$

$H_1$: at least one of the $\alpha$s is different from zero

Step 4: Reject the null and conclude that there is significant evidence of heteroscedasticity when the statistic is bigger than the critical value.

The statistic with computed value is:

$$n \cdot R^2 \, \Rightarrow = 20\times 0.4488 = 8.977$$

The statistics follow asymptotically $\chi^2_{df}$, where $df=k-1$. The Critical value is $\chi^2_5$ at a 5% level of significance is  11.07. 

https://itfeature.com

Since the calculated value is smaller than the tabulated value, therefore, the null hypothesis is accepted. Therefore, based on the White general heteroscedasticity test, there is no heteroscedasticity.

Download the data file: White’s test Related Data

Online MCQs Quiz Website

Park Glejser Test: Numerical Example (2021)

To detect the presence of heteroscedasticity using the Park Glejser test, consider the following data.

Year1992199319941995199619971998
Yt37484536255563
Xt4.56.53.532.58.57.5

The step-by-step procedure for conducting the Park Glejser test:

Step 1: Obtain an estimate of the regression equation

$$\hat{Y}_i = 19.8822 + 4.7173X_i$$

Obtain the residuals from this estimated regression equation:

Residuals-4.1103-2.54508.60711.9657-6.6756-4.97977.7377
Heteroscedasticity Detection: Park Glejser Test Numerical Example

Take the absolute values of these residuals and consider it as your dependent variables to perform the different functional forms suggested by Glejser.

Step 2: Regress the absolute values of $\hat{u}_i$ on the $X$ variable that is thought to be closely associated with $\sigma_i^2$. We will use the following function forms.

Sr. No.Functional FormResults
1)$|\hat{u}_t| = \beta_1 + \beta_2 X_i +v_i$ $|\hat{u}_i| = 5.2666-0.00681X_i,\quad R^2=0.00004$

$t_{cal} = -0.014$

   
2)$|\hat{u}_t| = \beta_1 + \beta_2 \sqrt{X_i} +v_i$$|\hat{u}_i| = 5.445-0.0962X_i,\quad R^2=0.000389$

$t_{cal} = -0.04414$

   
3)$|\hat{u}_t| = \beta_1 + \beta_2 \frac{1}{X_i} +v_i$$||\hat{u}_i| = 4.9124+1.3571X_i,\quad R^2=0.00332$

$t_{cal} = -0.12914$

   
4)$|\hat{u}_t| = \beta_1 + \beta_2 \frac{1}{\sqrt{X_i}} +v_i$

$\hat{u}_i| = 4.7375+1.0428X_i,\quad R^2=0.00209$ $t_{cal} = 0.10252$

Since none of the residual regression is significant, therefore, the hypothesis of heteroscedasticity is rejected. Therefore, we can say that there is no relationship between the absolute value of the residuals ($u_i$) and the explanatory variable $X$.

Error Variance is Proportional to Xi: Park Glejser Test

How to perform White General Heteroscedasticity?

Online MCQs First Year Mathematics

R Data Analysis

Goldfeld-Quandt Test Example (2020)

Data is taken from the Economic Survey of Pakistan 1991-1992. The data file link is at the end of the post “Goldfeld-Quandt Test Example for the Detection of Heteroscedasticity”.

Read about the Goldfeld-Quandt Test in detail by clicking the link “Goldfeld-Quandt Test: Comparison of Variances of Error Terms“.

Goldfeld-Quandt Test Example

For an illustration of the Goldfeld-Quandt Test Example, the data given in the file should be divided into two sub-samples after dropping (removing/deleting) the middle five observations.

Sub-sample 1 consists of data from 1959-60 to 1970-71.

Sub-sample 2 consists of data from 1976-77 to 1987-1988.

The sub-sample 1 is highlighted in green colour, and sub-sample 2 is highlighted in blue color, while the middle observation that has to be deleted is highlighted in red.

Goldfeld-Quandt Test Example

The Step-by-Step Procedure to Conduct the Goldfeld Quandt Test

Step 1: Order or Rank the observations according to the value of $X_i$. (Note that observations are already ranked.)

Step 2: Omit $c$ central observations. We selected 1/6 observations to be removed from the middle of the observations. 

Step 3: Fit OLS regression on both samples separately and obtain the Residual Sum of Squares (RSS) for each sub-sample.

The Estimated regression for the two sub-samples are:

Sub-sample 1: $\hat{C}_1 = 1010.096 + 0.849 \text{Income}$

Sub-sample 2: $\hat{C}_2 = -244.003 + 0.88067 \text{Income}$

Now compute the Residual Sum of Squares for both sub-samples.

The residual Sum of Squares for Sub-Sample 1 is $RSS_1=2532224$

The residual Sum of Squares for Sub-Sample 2 is $RSS_2=10339356$

The F-Statistic is $ \lambda=\frac{RSS_2/n_2}{RSS_1/n_1}=\frac{10339356}{2532224}=4.083$

The critical value of $F(n_1=10, n_2=10$ at a 5% level of significance is 2.98.

Since the computed F value is greater than the critical value, heteroscedasticity exists in this case, that is, the variance of the error term is not consistent, rather it depends on the independent variable, GNP.

Your assignment is to perform the Goldfeld-Quandt Test Example using any statistical software and confirm the results.

Download the data file by clicking the link “GNP and consumption expenditure data“.

Learn about White’s Test of Heteroscedasticity

Goldfeld-Quandt Test Example

Learn R Programming

Online Test Preparation MCQS with Answers