Multivariate Data Sets: Descriptive Statistics

Much of the information contained in the multivariate data sets can be assessed by calculating certain summary numbers, known as multivariate descriptive statistics such as Arithmetic mean (a measure of location), an average of the squares of the distances of all of the numbers from the mean (variation/spread i.e. measure of spread or variation), etc. Here we will discuss descriptive statistics and multivariate data sets.

Multivariate Data Sets: Descriptive Analysis

We shall rely most heavily on descriptive statistics which is a measure of location, variation, and linear association. For descriptive statistics multivariate data set, let us start with a measure of location, a measure of spread, sample covariance, and sample correlation coefficient.

Measure of Location

The arithmetic average of $n$ measurements $(x_{11}, x_{21}, x_{31},x_{41})$ on the first variable (defined in Multivariate Analysis: An Introduction) is

Sample Mean = $\bar{x}=\frac{1}{n} \sum _{j=1}^{n}x_{j1} \mbox{ where } j =1, 2,3,\cdots , n $

The sample mean for $n$ measurements on each of the p variables (there will be p sample means)

$\bar{x}_{k} =\frac{1}{n} \sum _{j=1}^{n}x_{jk} \mbox{ where }  k  = 1, 2, \cdots , p$

Measure of Spread

Measure of spread (variance) for $n$ measurements on the first variable for multivariate data sets can be found as
$s_{1}^{2} =\frac{1}{n} \sum _{j=1}^{n}(x_{j1} -\bar{x}_{1} )^{2} $ where $\bar{x}_{1} $ is sample mean of the $x_{j}$’s for p variables.

Measure of spread (variance) for $n$ measurements on all variables can be found as

$s_{k}^{2} =\frac{1}{n} \sum _{j=1}^{n}(x_{jk} -\bar{x}_{k} )^{2}  \mbox{ where } k=1,2,\dots ,p \mbox{ and } j=1,2,\cdots ,p$

The Square Root of the sample variance is the sample standard deviation i.e

$S_{l}^{2} =S_{kk} =\frac{1}{n} \sum _{j=1}^{n}(x_{jk} -\bar{x}_{k} )^{2}  \mbox{ where }  k=1,2,\cdots ,p$

Multivariate Data sets

Sample Covariance

Consider $n$pairs of measurement on each of Variable 1 and Variable 2
\[\left[\begin{array}{c} {x_{11} } \\ {x_{12} } \end{array}\right],\left[\begin{array}{c} {x_{21} } \\ {x_{22} } \end{array}\right],\cdots ,\left[\begin{array}{c} {x_{n1} } \\ {x_{n2} } \end{array}\right]\]
That is $x_{j1}$ and $x_{j2}$ are observed on the jth experimental item $(j=1,2,\cdots ,n)$. So a measure of linear association between the measurements of  $V_1$ and $V_2$ for multivariate data sets is provided by the sample covariance
\[s_{12} =\frac{1}{n} \sum _{j=1}^{n}(x_{j1} -\bar{x}_{1} )(x_{j2} -\bar{x}_{2}  )\]
(the average product of the deviation from their respective means) therefore

$s_{ik} =\frac{1}{n} \sum _{j=1}^{n}(x_{ji} -\bar{x}_{i} )(x_{jk} -\bar{x}_{k}  )$;  $i=1,2,\cdots, p$ and $k=1,2,\cdots, p$.

It measures the association between the kth variable.

Variance is the most commonly used measure of dispersion (variation) in the data and it is directly proportional to the amount of variation or information available in the data.

Sample Correlation Coefficient

For Multivariate Data Sets, the sample correlation coefficient for the ith and kth variables is

\[r_{ik} =\frac{s_{ik} }{\sqrt{s_{ii} } \sqrt{s_{kk} } } =\frac{\sum _{j=1}^{n}(x_{ji} -\bar{x}_{j} )(x_{jk} -\bar{x}_{k} ) }{\sqrt{\sum _{j=1}^{n}(x_{ji} -\bar{x}_{i} )^{2}  } \sqrt{\sum _{j=1}^{n}(x_{jk} -\bar{x}_{k}  )^{2} } } \]
$\mbox{ where } i=1,2,..,p \mbox{ and}  k=1,2,\dots ,p$

Note that $r_{ik} =r_{ki} $ for all $i$ and $k$, and $r$ lies between $-1$ and $+1$. $r$ measures the strength of the linear association. If $r=0$ the lack of linear association between the components exists. The sign of $r$ indicates the direction of the association.

Learn the use of matrices in R Language

Online MCQs Economics

Leave a Comment

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Discover more from Statistics for Data Analyst

Subscribe now to keep reading and get access to the full archive.

Continue reading

Scroll to Top