Sampling Error Definition, Example, Formula

In Statistics, sampling error also called estimation error is the amount of inaccuracy in estimating some value that is caused by only a portion of a population (i.e. sample) rather than the whole population. It is the difference between the statistic (value of the sample, such as sample mean) and the corresponding parameter (value of population, such as population mean) is called the sampling error. If $\bar{x}$ is the sample statistic and $\mu$ is the corresponding population parameter then it is defined as \[\bar{x} – \mu\].

Exact calculation/ measurements of sampling error are not feasible generally as the true value of the population is unknown usually, however, it can often be estimated by probabilistic modeling of the sample.

Sampling Error

Causes of Sampling-Error

  • The cause of the Error discussed may be due to the biased sampling procedure. Every research should select sample(s) that is free from any bias and the sample(s) are representative of the entire population of interest.
  • Another cause of this Error is chance. The process of randomization and probability sampling is done to minimize the sampling process error but it is still possible that all the randomized subjects/ objects are not representative of the population.

Eliminate/ Reduce the Sampling Error

The elimination/ Reduction of sampling-error can be done when a proper and unbiased probability sampling technique is used by the researcher and the sample size is large enough.

  • Increasing the sample size
    The sampling-error can be reduced by increasing the sample size. If the sample size $n$ is equal to the population size $N$, then the sampling error will be zero.
  • Improving the sample design i.e. By using the stratification
    The population is divided into different groups containing similar units.

The potential Sources of Errors are:

Potential Sources of Sampling and Non-Sampling

Also Read: Sampling and Non-Sampling Errors

Read more about Sampling Error on Wikipedia

https://rfaqs.com

Truth about Bias in Statistics

Bias in Statistics is defined as the difference between the expected value of a statistic and the true value of the corresponding parameter. Therefore, the bias is a measure of the systematic error of an estimator. The bias indicates the distance of the estimator from the true value of the parameter. For example, if we calculate the mean of a large number of unbiased estimators, we will find the correct value.

Bias in Statistics: The Difference between Expected and True Value

In other words, the bias (sampling error) is a systematic error in measurement or sampling and it tells how far off on the average the model is from the truth.

Gauss, C.F. (1821) during his work on the least-squares method gave the concept of an unbiased estimator.

The bias of an estimator of a parameter should not be confused with its degree of precision as the degree of precision is a measure of the sampling error. The bias is favoring one group or outcome intentionally or unintentionally over other groups or outcomes available in the population under study. Unlike random errors, bias is a serious problem and bias can be reduced by increasing the sample size and averaging the outcomes.

Bias in Statistics

Several types of bias should not be considered mutually exclusive

  • Selection Bias (arise due to systematic differences between the groups compared)
  • Exclusion Bias (arises due to the systematic exclusion of certain individuals from the study)
  • Analytical Bias (arise due to the way that the results are evaluated)

Mathematically Bias can be defined as

Let statistics $T$ used to estimate a parameter $\theta$, if $E(T) = \theta$+ bias$(\theta)$ then bias$(\theta)$ is called the bias of the statistic $T$, where $E(T)$ represents the expected value of the statistics $T$.

Note: that if bias$(\theta)=0$, then $E(T)=\theta$. So, $T$ is an unbiased estimator of the true parameter, say $\Theta$.

Types of Sample Selection Bias

Reference:
Gauss, C.F. (1821, 1823, 1826). Theoria Combinations Observationum Erroribus Minimis Obnoxiae, Parts 1, 2 and suppl. Werke 4, 1-108.

For further reading about Statistical Bias visit: Bias in Statistics.

Learn about Estimation and Types of Estimation

Outliers and Influential Observations

Here we will focus on the difference between the outliers and influential observations.

Outliers

The cases (observations or data points) that do not follow the model as the rest of the data are called outliers. In Regression, the cases with large residuals are a candidate for outliers. So an outlier is a data point that diverges from an overall pattern in a sample. Therefore, an outlier can certainly influence the relationship between the variables and may also exert an influence on the slope of the regression line.

An outlier can be created by a shift in the location (mean) or in the scale (variability) of the process. An outlier may be due to recording errors (may be correctable), or due to the sample not being entirely from the same population. This may also be due to the values from the same population but from the non-normal (heavy-tailed) population. That is, outliers may be due to incorrect specifications that are based on the wrong distributional assumptions.

Outliers and Influential Observations

Inferential Observations

An influential observation is often an outlier in the x-direction. Influential observation may arise from

  1. observations that are unusually large or otherwise deviate in unusually extreme forms from the center of a reference distribution,
  2. the observation may be associated with a unit that has a low probability and thus has a high probability weight.
  3. the observation may have a very large weight (relative to the weights of other units in the specified sub-population) due to problems with stratum jumping; sampling of birth units or highly seasonal units; large nonresponse adjustment factors arising from unusually low response rates within a given adjustment cell; unusual calibration-weighting effects; or other factors.

Importance of Outliers and Influential Observations

Outliers and Influential observations are important because:

  • Both outliers and influential observations can potentially mislead the interpretation of the regression model.
  • Outliers might indicate errors in the data or a non-linear relationship that the model cannot capture.
  • Influential observations can make the model seem more accurate than it is, masking underlying issues.

How to Identify Outliers and Influential Observations

Both outliers and influential observations can be identified by using:

  • Visual inspection: Scatterplots can reveal outliers as distant points.
  • Residual plots: Plotting residuals against predicted values or independent variables can show patterns indicative of influential observations.
  • Statistical diagnostics: Measures like Cook’s distance or leverage can quantify the influence of each data point.

By being aware of outliers and influential observations, one can ensure that the regression analysis provides a more reliable picture of the relationship between variables.

Learn R Programming Language