Classical Probability: Example, Definition, and Uses (2017)

Classical probability is the statistical concept that measures the likelihood (probability) of something happening. In a classic sense, it means that every statistical experiment will contain elements that are equally likely to happen (equal chances of occurrence of something). Therefore, the concept of classical probability is the simplest form of probability that has equal odds of something happening.

Classical Probability Examples

Example 1: The typical example of classical probability would be rolling a fair die because it is equally probable that the top face of the die will be any of the 6 numbers on the die: 1, 2, 3, 4, 5, or 6.

Example 2: Another example of classical probability would be tossing an unbiased coin. There is an equal probability that your toss will yield either head or tail.

Example 3: In selecting bingo balls, each numbered ball has an equal chance of being chosen.

Example 4: Guessing a multiple choice quiz (MCQs) test with (say) four possible answers A, B, C, or D. Each option (choice) has the same odds (equal chances) of being picked (assuming you pick randomly and do not follow any pattern).

Classical Probability Formula

The probability of a simple event happening is the number of times the event can happen, divided by the number of possible events (outcomes).

Mathematically $P(A) = \frac{f}{N}$,

where, $P(A)$ means “probability of event A” (event $A$ is whatever event you are looking for, like winning the lottery, that is event of interest), $f$ is the frequency, or number of possible times the event could happen and $N$ is the number of times the event could happen.

For example,  the odds of rolling a 2 on a fair die are one out of 6, (1/6). In other words, one possible outcome (there is only one way to roll a 1 on a fair die) is divided by the number of possible outcomes.

Classical probability can be used for very basic events, like rolling a dice and tossing a coin, it can also be used when the occurrence of all events is equally likely. Choosing a card from a standard deck of cards gives you a 1/52 chance of getting a particular card, no matter what card you choose. On the other hand, figuring out whether will it rain tomorrow or not isn’t something you can figure out with this basic type of probability. There might be a 15% chance of rain (and therefore, an 85% chance of it not raining).

Classical Probability Formula

Other Examples of classical Probability

There are many other examples of classical probability problems besides rolling dice. These examples include flipping coins, drawing cards from a deck, guessing on a multiple-choice test, selecting jellybeans from a bag, choosing people for a committee, etc.

Classical Probability cannot be used:

Dividing the number of events by the number of possible events is very simplistic, and it isn’t suited to finding probabilities for a lot of situations. For example, natural events like weights, heights, and test scores need normal distribution probability charts to calculate probabilities. Most “real life” things aren’t simple events like coins, cards, or dice. You’ll need something more complicated than classical probability theory to solve them.

It is important to note that the classical probability is most applicable in situations where:

  • All possible outcomes can be clearly defined and listed.
  • Each outcome has an equal chance of happening.

In conclusion, classical probability provides a foundational understanding of probability concepts, and it has various applications in games of chance, simple random sampling, and other situations where clear, equally likely outcomes can be defined.

For further Details see Introduction to Probability Theory

R Frequently Asked Questions

Online MCQs Quiz Website of Various Subjects

Skewness in Statistics A Measure of Asymmetry (2017)

The article is about Skewness in Statistics, a measure of asymmetry. Skewed and skew are widely used terminologies that refer to something that is out of order or distorted on one side. Similarly, when referring to the shape of frequency distributions or probability distributions, the term skewness also refers to the asymmetry of that distribution. A distribution with an asymmetric tail extending out to the right is referred to as “positively skewed” or “skewed to the right”. In contrast, a distribution with an asymmetric tail extending out to the left is “negatively skewed” or “skewed to the left”.

Skewness in Statistics A measure of Asymmetry

Skewness in Statistics

It ranges from minus infinity ($-\infty$) to positive infinity ($+\infty$). In simple words, skewness (asymmetry) is a measure of symmetry, or in other words, skewness is a lack of symmetry.

Skewness by Karl Pearson

Karl Pearson (1857-1936) first suggested measuring skewness by standardizing the difference between the mean and the mode, such that, $\frac{\mu-mode}{\text{standard deviation}}$. Since population modes are not well estimated from sample modes, therefore Stuart and Ord, 1994 suggested that one can estimate the difference between the mean and the mode as being three times the difference between the mean and the median. Therefore, the estimate of skewness will be $$\frac{3(M-median)}{\text{standard deviation}}$$. Many of the statisticians use this measure but after eliminating the ‘3’, that is, $$\frac{M-Median}{\text{standard deviation}}$$. This statistic ranges from $-1$ to $+1$. According to Hildebrand, 1986, absolute values above 0.2 indicate great skewness.

Fisher’s Skewness

Skewness has also been defined concerning the third moment about the mean, that is $\gamma_1=\frac{\sum(X-\mu)^3}{n\sigma^3}$, which is simply the expected value of the distribution of cubed $Z$ scores, measured in this way is also sometimes referred to as “Fisher’s skewness”. When the deviations from the mean are greater in one direction than in the other direction, this statistic will deviate from zero in the direction of the larger deviations.

From sample data, Fisher’s skewness is most often estimated by: $$g_1=\frac{n\sum z^3}{(n-1)(n-2)}$$. For large sample sizes ($n > 150$), $g_1$ may be distributed approximately normally, with a standard error of approximately $\sqrt{\frac{6}{n}}$. While one could use this sampling distribution to construct confidence intervals for or tests of hypotheses about $\gamma_1$, there is rarely any value in doing so.

Bowleys’ Coefficient of Skewness

Arthur Lyon Bowley (1869-19570, has also proposed a measure of asymmetry based on the median and the two quartiles. In a symmetrical distribution, the two quartiles are equidistant from the median but in an asymmetrical distribution, this will not be the case. The Bowley’s coefficient of skewness is $$\frac{q_1+q_3-2\text{median}}{Q_3-Q_1}$$. Its value lies between 0 and $\pm1$.

The most commonly used measures of Asymmetry (those discussed here) may produce some surprising results, such as a negative value when the shape of the distribution appears skewed to the right.

Impact of Lack of Symmetry

Researchers from the behavioral and business sciences need to measure the lack of symmetry when it appears in their data. A great amount of asymmetry may motivate the researcher to investigate the existence of outliers. When making decisions about which measure of the location to report and which inferential statistic to employ, one should take into consideration the estimated skewness of the population. Normal distributions have zero skewness. Of course, a distribution can be perfectly symmetric but may be far away from the normal distribution. Transformations of variables under study are commonly employed to reduce (positive) asymmetry. These transformations may include square root, log, and reciprocal of a variable.

In summary, by understanding and recognizing how skewness affects the data, one can choose appropriate analysis methods, gain more insights from the data, and make better decisions based on the findings.

FAQs About Skewness

  1. What statistical measure is used to find the asymmetry in the data?
  2. Define the term Skewness.
  3. What is the difference between symmetry and asymmetry concept?
  4. Describe negative and positive skewness.
  5. What is the difference between left-skewed and right-skewed data?
  6. What is a lack of symmetry?
  7. Discuss the measure proposed by Karl Pearson.
  8. Discuss the measure proposed by Bowley’s Coefficient of Skewness.
  9. For what distribution, the skewness is zero?
  10. What is the impact of transforming a variable?

Online MCQS/ Qui Test Website

R Programming Language

Operator order of precedence and Creating Formula in Excel

Creating Formula in Excel

Creating customized (user-defined) formulas in Microsoft Excel is not too difficult. For creating formulas just combine the references of your data with the correct mathematical operator (such as -, +, /, *, and ^).

Operator Order of Precedence

The order of mathematical operations determines in which order the mathematical operations are carried out. If more than mathematical operators are used in the formula, there is a specific order (sequence) that Microsoft Excel will follow to perform (compute) these mathematical operations. However, to change the order of operations, brackets (parenthesis) are used in the Excel formula. The easy way to remember the order of operations (precedence) is to remember the acronym: BEDMAS (PEDMAS), that i.e.,

The Operator order of precedence (operations) is:

Bracket or Parenthesis
Exponents (^)
Division (/)
Multiplication (*)
Addition (+)
Subtraction (-)

Suppose, the following is the screenshot of an Excel sheet. The formula is also shown in the formula bar. As an example, addition (+), division (/), and multiplication (*) operators are used.

Operator order of precedence

The formula in the screenshot performs the computation in the following order,

  • $E1/F1$ will be computed (the answer is 1.5),
  • the answer of $E1/F1$ will be multiplied by value of $G1$ (answer is $1.5*2 = 3$)
  • the answer of $E1/F1 * G1$ will be added to $D1$ (answer is 7)

Any operation(s) enclosed in brackets (parenthesis) will be carried out first followed by any exponents. After that, Excel will consider division or multiplication operations to be of equal importance. The operations are performed in the order they occur left to right in the formula. A similar sequence is also performed for addition and subtraction. Both (addition and subtraction) are considered equal in the order of operations. The operator that appears first will be computed first.

order of precedence bracket

For example, see the screenshot The sequence of operations is

  • The first bracket will be computed, that is, multiplication will be performed $(2 *2 = 4)$
  • E1 will be divided by the answer from the multiplication of $F1$ and $G1 (3/4 = 0.75)$
  • Lastly, $D1$ will be added to the answer $0.75 (4 + 0.75 = 4.75)$

Now check the sequence in the following screenshot

order of precedence bracket

For Creating formula in Excel, see the link Creating Excel Formula

Learn R Programming

Online MCQs Test Website

Convert PDF to Editable File Formats in 3 Easy Steps

The post is about different ways to convert PDF to editable file formats.

Since the introduction of computers into our lives, we’ve been able to do things that we couldn’t do before. Slowly but surely, our PC skills have improved and today we are using new technologies that are enabling us to be better and more productive in almost every aspect of our lives.

One huge part of modern technology is digital documents which are a legacy of the digital revolution. Paper documents have been replaced by digital files at one point since they are easier to use, edit, and share between colleagues and friends.

One of the most used and known digital file formats is Portable Document Format, better known as PDF. Developed and published in the nineties, the PDF is still a number one format for managers, students, accountants, writers, and many others. For more than 20 years it has been building up supporters, who use it for 3 main reasons:

  1. It’s universal — it can be opened on any device (including mobile devices).
  2. It’s shareable — documents are easily shared across all platforms.
  3. It’s standardized — the files always maintain original formatting.

Aside from attractive features that make this file format popular, there is one major downside to using PDF — the format is not so easy to edit.

If you want to make changes to your financial or project reports saved in PDF, the best thing to do is to edit your documents using software that’s designed for that purpose. One such tool is Able2Extract Professional 11, known for its powerful and modern PDF editing features.

With Able2Extract’s integrated PDF editor you can:

  • Resize and scale more pages at once
  • Add 10 different annotations
  • Customize any individual page
  • Add and delete your PDF content
  • Extract and combine multiple PDFs
  • Redact any sensitive content
  • Convert PDF to Editable File Formats

Convert PDF to Editable File Format

The software is used to convert PDF to Editable File Format over 10 different file formats (MS Office, AutoCAD, Image, HTML, CSV) and it’s available for all three desktop platforms.

It’s so easy to use that all you need to do is follow this three-step conversion process:

  1. Click Open and select the PDF document that you want to convert.convert pdf
  2. Select either the entire document or just a part, using the Selection panel. After making the selection, click on the desired output format.
    Convert PDF
  3. Choose where you want your document to be saved, and the conversion will begin.
Convert PDF to Editable File Formats in 3 Easy Steps

Besides editing and conversion, the developers of Able2Extract decided to provide complete document encryption and decryption upon your PDF creation.

Now you can set up file owners, configure passwords, and share your documents freely. By clicking on the “Create” button in Able2Extract, the software will automatically make a PDF document from your file.

Able2Extract Convert PDF to Editable File Format

To conclude this quick guide: the process of converting PDF to Editable File Format is precise, quick, and most importantly — it can boost your office productivity. On the downside, the tool is aimed at experienced business professionals, with the full, lifetime license costing around $150.

To see if Able2Extract is a tool that can help you with your everyday document struggles, you can download the free trial version. It lasts for 7 days, which is more than enough to make the right call.

See the video for further information and working of Able2Extact software

R Frequently Asked Questions