Use of t Distribution in Statistics

The post is about the use of t Distribution in Statistics. The t distribution, also known as the Student’s t-distribution, is a probability distribution used to estimate population parameter(s) when the sample size is small or when the population variance is unknown. The t distribution is similar to the normal bell-shaped distribution but has heavier tails. This means that it gives a lower probability to the center and a higher probability to the tails than the standard normal distribution.

The t distribution is particularly useful as it accounts for the extra variability that comes with small sample sizes, making it a more accurate tool for statistical analysis in such cases.

The following are the commonly used situations in which t distribution is used:

Use of t Distribution: Confidence Intervals

The t distribution is widely used in constructing confidence intervals. In most of the cases, The width of the confidence intervals depends on the degrees of freedom (sample size – 1):

  1. Confidence Interval for One Sample Mean
    $$\overline{X} \pm t_{\frac{\alpha}{2}} \left(\frac{s}{\sqrt{n}} \right)$$
    where $t_{\frac{\alpha}{2}}$ is the upper $\frac{\alpha}{2}$ point of the t distribution with $v=n-1$ degrees of freedom and $s^2$ is the unbiased estimate of the population variance obtained from the sample, $s^2 = \frac{\Sigma (X_i-\overline{X})^2}{n-1} = \frac{\Sigma X^2 – \frac{(\Sigma X)^2}{n}}{n-1}$
  2. Confidence Interval for Difference between Two Independent Samples MeanL
    Let $X_{11}, X_{12}, \cdots, X_{1n_1}$ and $X_{21}, X_{22}, \cdots, X_{2n_2}$ be the random samples of size $n_1$ and $n_2$ from normal population with variances $\sigma_1^2$ and $\sigma_2^2$, respectively. Let $\overline{X}_1$ and $\overline{X}_2$ be the respectively sample means. The confidence interval for the difference between two population mean $\mu_1 – \mu_2$ when the population variances $\sigma_1^2$ and $\sigma_2^2$ are unknown and the sample sizes $n_1$ and $n_2$ are small (less than 30) is
    $$(\overline{X}_1 – \overline{X}_2 \pm t_{\frac{\alpha}{2}}(S_p)\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$
    where $S_p = \frac{(n_1 – 1)s_1^2 + (n_2-1)s_2^2}{n_1-n_2-2}$ (Pooled Variance), where $s_1^2$ and $s_2^2$ are the unbiased estimates of population variances $\sigma_1^2$ and $\sigma_2^2$, respectively.
  3. Confidence Interval for Paired Observations
    The confidence interval for $\mu_d=\mu_1-\mu_2$ is
    $$\overline{d} \pm t_{\frac{\alpha}{2}} \frac{S_d}{\sqrt{n}}$$
    where $\overline{d}$ and $S_d$ are the mean and standard deviation of the differences of $n$ pairs of measurements and $t_{\frac{\alpha}{2}}$ is the upper $\frac{\alpha}{2}$ point of the distribution with $n-1$ degrees of freedom.

Use of t Distribution: Testing of Hypotheses

The t-tests are used to compare means between two groups or to test if a sample mean is significantly different from a hypothesized population mean.

  1. Testing of Hypothesis for One Sample Mean
    It compares the mean of a single sample to a known population mean when the population standard deviation is known,
    $$t=\frac{\overline{X}-\mu}{\frac{s}{\sqrt{n}}}$$
  2. Testing of Hypothesis for Difference between Two Population Means
    For two random samples of sizes $n_1$ and $n_2$ drawn from two normal population having equal variances ($\sigma_1^2 = \sigma_2^2 = \sigma^2$), the test statistics is
    $$t=\frac{\overline{X}_1 – \overline{X}_2}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
    with $v=n_1+n_2-2$ degrees of freedom.
  3. Testing of Hypothesis for Paird/Dependent Observations
    To test the null hypothesis ($\mu_d = \mu_o$) the statistics is
    $$t=\frac{\overline{d} – d_o}{\frac{s_d}{\sqrt{n}}}$$
    with $v=n-1$ degrees of freedom.
  4. Testing the Coefficient of Correlation
    For $n$ pairs of observations (X, Y), the sample correlation coefficient, the test of significance (testing of hypothesis) for the correlation coefficient is
    $$t=\frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$
    with $v=n-2$ degrees of freedom.
  5. Testing the Regression Coefficients
    The t distribution is used to test the significance of regression coefficients in linear regression models. It helps determine whether a particular independent variable ($X$) has a significant effect on the dependent variable ($Y$). The regression coefficient can be tested using the statistic
    $$t=\frac{\hat{\beta} – \beta}{\sqrt{SE_{\hat{\beta}}}}$$
    where $SE_{\hat{\beta}} = \frac{S_{Y\cdot X}}{\sqrt{\Sigma (X-\overline{X})^2}}=\frac{\sqrt{\frac{\Sigma Y^2 – \hat{\beta}_o \Sigma X – \hat{\beta}_1 \Sigma XY }{n-2} } }{S_X \sqrt{n-1}}$

The t distribution is a useful statistical tool for data analysis as it allows the user to make inferences/conclusions about population parameters even when there is limited information about the population.

MCQs in Statistics, Test Preparation MCQs, R and Data Analysis

https://itfeature.com use of t distribution

Frequently Asked Questions about the Use of t Distribution

  • What is t distribution?
  • Discuss what type of confidence intervals can be constructed by using t distribution.
  • Discuss what type of hypothesis testing can be performed by using t distribution.
  • How does the t distribution resemble the normal distribution?
  • What is meant by small sample size and unknown population variance?

Poisson Probability Distribution

The Poisson Probability Distribution is discrete and deals with events that can only take on specific, whole number values (like the number of cars passing a certain point in an hour). Poisson Probability Distribution models the probability of a given number of events occurring in a fixed interval of time or space, given a known average rate of occurrence ($\mu$). The events must be independent of each other and occur randomly.

The Poisson probability function gives the probability for the number of events that occur in a given interval (often a period of time) assuming that events occur at a constant rate during the interval.

Poisson Random Variable

The Poisson random variable satisfies the following conditions:

  • The number of successes in two disjoint time intervals is independent
  • The probability of success during a small time interval is proportional to the entire length of the time interval.
  • The probability of two or more events occurring in a very short interval is negligible.

Apart from disjoint time intervals, the Poisson random variable is also applied to disjoint regions of space.

Applications of Poisson Probability Distribution

The following are a few of the applications of Poisson Probability Distribution:

  • The number of deaths by horse kicking in the Prussian Army (it was the first application).
  • Birth defects and genetic mutations.
  • Rare diseases (like Leukemia, but not AIDS because it is infectious and so not independent), especially in legal cases.
  • Car accidents
  • Traffic flow and ideal gap distance
  • Hairs found in McDonald’s hamburgers
  • Spread of an endangered animal in Africa
  • Failure of a machine in one month

The formula of Poisson Distribution

The probability distribution of a Poisson random variable $X$ representing the number of successes occurring in a given time interval or specified region of space is given by

\begin{align*}
P(X=x)&=\frac{e^{-\mu}\mu^x}{x!}\,\,\quad x=0,1,2,\cdots
\end{align*}

where $P(X=x)$ is the probability of $x$ events occurring, $e$ is the base of the natural logarithm (~2.71828), $\mu$ is the mean number of successes in the given time interval (or region of space), $x$ is the number of events we are interested in, and $x!$ is the factorial of $x$.

Poisson Probability Distribution

Mean and Variance of Poisson Distribution

If $\mu$ is the average number of successes occurring in a given time interval (or region) in the Poisson distribution, then the mean and the variance of the Poisson distribution are both equal to $\mu$. That is,

\begin{align*}
E(X) &= \mu\\
V(X) &= \sigma^2 =\mu
\end{align*}

A Poisson distribution has only one parameter, $\mu$ is needed to determine the probability of an event. For binomial experiments involving rare events (small $p$) and large values of $n$, the distribution of $X=$ the number of success out of $n$ trials is binomial, but it is also well approximated by the Poisson distribution with mean $\mu=np$.

When to Use Poisson Probability Distribution

The Poisson distribution is useful in various scenarios:

  • Modeling Rare Events: Like accidents, natural disasters, or equipment failures.
  • Counting Events in a Fixed Interval: Such as the number of customers arriving at a store in an hour, or the number of calls to a call center in a minute.
  • Approximating the Binomial Distribution: When the number of trials ($n$) is large and the probability of success ($p$) is small.

It is important to note that

  • The Poisson distribution is related to the exponential distribution, which models the time between events.
  • It is a fundamental tool in probability theory and statistics, with applications in fields like operations research, queuing theory, and reliability engineering.

R and Data Analysis, Test Preparation MCQs

Frequently Asked Questions about Poisson Distribution

  1. What is the Poisson Random Variable?
  2. What is Poisson Probability Distribution?
  3. Write the Formula of Poisson Probability Distribution.
  4. Poisson distribution is related to what distribution?
  5. Give some important applications of Poisson Distribution.
  6. Describe the general situations in which Poisson distribution can be used.
  7. Name the distribution that has equal mean and variance.
  8. What are the required conditions for poison random variables?

Probability Distribution Discrete Random Variable

A probability distribution for a discrete random variable $X$ is a list of each possible value for $X$ with the probability that $X$ will have that value when the experiment is run. The likelihood for the probability distribution of a discrete random variable is denoted by $P(X=x)$. The probability distribution of a discrete random variable is also called a discrete probability distribution.

A discrete probability distribution is a mathematical function that assigns probabilities to each possible value of a discrete random variable.

Example of Probability Distribution of a Discrete Random Variable

Let $X$ be a random variable representing the number of trials obtained when a coin is flipped three times in an experiment. The sample space of the experiment is:

$$HHH, HHT, HTH, THH, HTT, TTH, THT, TTT$$

where $T$ represents the occurrence of Tail and $H$ represents the occurrence of Head in the above experiment.

Then $X$ has 4 possible values: $0, 1, 2, 3$ for the occurrence of head or tail. The probability distribution for $X$ is given as below:

$X$$P(X)$
0$\frac{1}{8}$
1$\frac{3}{8}$
2$\frac{3}{8}$
3$\frac{1}{8}$
Total$1.0$

In a statistics class of 25 students are given a 5-point quiz. 3 students scored 0; 1 student scored 1, 4 students scored 2, 8 students scored 3, 6 students scored 4, and 3 students scored 5. If a student is chosen at random, and the random variable $S$ is the student’s Quiz Score then the discrete probability distribution of $S$ is

$S$$P(S)$
00.12
10.04
20.16
30.32
40.24
50.12
Total1.0

Note that for any discrete random variable $X$, $0\le P(X) \le 1$ and $\Sigma P(X) =1$.

Finding Probabilities from a Discrete Probability Distribution

Since a random variable can only take one value at a time, the events of a variable assuming two different values are always mutually exclusive. The probability of the variable taking on any number of different values can thus be found by simply adding the appropriate probabilities.

discrete and continuous probability distributions, discrete random variable

Mean or Expected Value of a Discrete Random Variable

The mean or expected value of a random variable $X$ is the average value that one should expect for $X$ over many trials of the experiment in the long run. The general notation of the mean or expected value of a random variable $X$ is represented as

$$\mu_x\quad \text{ or } E[X]$$

The mean of a discrete random variable is computed using the formula

$$E[X]=\mu_x = \Sigma x\cdot P(X)$$

Example 1

From the above experiment of three Coins the Expected value of the random variable $X$ is

$X$$P(X)$$x.P(X)$
0$\frac{1}{8}$$0 \times \frac{1}{8} = 0$
1$\frac{3}{8}$$1 \times \frac{3}{8} = \frac{3}{8}$
2$\frac{3}{8}$$2 \times \frac{3}{8} = \frac{6}{8}$
3$\frac{1}{8}$$3 \times \frac{1}{8} = \frac{3}{8}$
Total$1.0$$\frac{3}{2} = 1.5$

Thus if three coins are flipped a large number of times, one should expect the average number of trials (per 3 flips) to be about 1.5.

Discrete Random Variable, discrete probability distributions

Example 2

Similarly, the mean of the random variable $S$ from the above example is

$S$$P(S)$$S\cdot P(S)$
00.12$0 \times 0.12 = 0$
10.04$1 \times 0.04 = 0.04$
20.16$2 \times 0.16 = 0.32$
30.32$3 \times 0.32 = 0.96$
40.24$4\times 0.24 = 0.96$
50.12$5 \times 0.12 = 0.60$
Total$1.0$$2.88$

Note that $2.88$ is the class average on the statistics quiz as well.

Variance and Standard Deviation of a Random Variable

One may be interested to find how much the values of a random variable differ from trial to trial. To measure this, one can define the variance and standard deviation for a random variable $X$. The variance of $X$ random variable is denoted by $\sigma^2_x$ while the standard deviation of the random variable $X$ is just the square root of $\sigma^2_x$. The formulas of variance and standard deviation of a random variable $X$ are:

\begin{align*}
\sigma^2_x &= \Sigma (x – \mu)^2 P(X)\\
\sigma_x &= \sqrt{\Sigma (x – \mu)^2 P(X)}
\end{align*}

Note that the standard deviation estimates the average difference between a value of $x$ and the expected value.

Calculating the Variance and Standard Deviation

The calculation of standard deviation for a random variable is similar to the calculation of weighted standard deviation in a frequency table. The $P(x)$ can be thought of as the relative frequency of $x$. The computation of variance and standard deviation of a random variable $X$ can be made using the following steps:

  1. Compute $\mu_X$ (mean of the random variable)
  2. Subtract the mean/average from each of the possible values of $X$. These values are called the deviations of the $X$ values.
  3. Square each of the deviations calculated in the previous step.
  4. Multiply each squared deviation (calculated in step 3) by the corresponding probability $P(x)$.
  5. Sum the results of step 4. The variance of the random variable will be obtained representing $\sigma^2_X$.
  6. Take the square root of the $\sigma^2_X$ computed in Step 5.

Importance of Discrete Probability Distributions

  • Modeling Real-World Phenomena: Discrete Distributions help us understand and model random events in various fields of life such as engineering, finance, and the sciences.
  • Decision Making: These distributions provide a framework for making informed decisions under uncertainty.
  • Statistical Inference: These are used to make inferences about populations based on sample data.

FAQs about the Probability Distribution of a Discrete Random Variable

  1. Define the probability distribution.
  2. What is a random variable?
  3. What is meant by an expected value or a random variable?
  4. What is meant by the variance and standard deviation of a random variable?

https://rfaqs.com, https://gmstat.com

The t Distribution 2024

Introduction to t Distribution

The Student’s t distribution or simply t distribution is a probability distribution similar to the normal probability distribution with heavier tails. The t distribution produces values that fall far from the average compared to the normal distribution. The t distribution is an important statistical tool for making inferences about the population parameters when the population standard deviation is unknown.

The t-distribution is used when one needs to estimate the population parameters (such as mean) but the population standard deviation is unknown. When $n$ is small (less than 30), one must be careful in invoking the normal distribution for $\overline{X}$. The distribution of $\overline{X}$ depends on the shape of the population distribution. Therefore, no single inferential procedure can be expected to work for all kinds of population distributions.

t Distribution

One Sample t-Test Formula

If $X_1, X_2, \cdots, X_n$ is a random sample from a normal population with mean $\mu$ and standard deviation of $\sigma$, the sample mean $\overline{X}$ is exactly distributed as normal with mean $\mu$ and standard deviation $\frac{\sigma}{\sqrt{n}}$ and $Z=\frac{\overline{X} – \mu}{\frac{\sigma}{\sqrt{n}}}$ is a standard normal variable. When $\sigma$ is unknown, the sample standard deviation is used, that is
$$t=\frac{\overline{X} – \mu}{\frac{s}{\sqrt{n}}},$$
which is analogous to the Z-statistic.

The Sampling Distribution for t

Consider samples of size $n$ drawn from a normal population with mean $\mu$ and for each sample, we compute $t$ using the sample $\overline{X}$ and sample standard deviation $S$ (or $s$), the sampling distribution for $t$ can be obtained

$$Y=\frac{k}{\left(1 + \frac{t^2}{n-1}\right)^{\frac{n}{2}} } = \frac{k}{\left(1+ \frac{t^2}{v} \right)^{\frac{v+1}{2} }},$$
where $k$ is a constant depending on $n$ such that the total area under the curve is one, and $v=n-1$ is called the number of degrees of freedom.

The t distributions are symmetric around zero but have thicker tails (more spread out) than the standard normal distribution. Note that with the large value of $n$, the t-distribution approaches the standard normal distribution.

Properties of the t Distribution

  • The t distribution is bell-shaped, unimodal, and symmetrical around the mean of zero (like the standard normal distribution)
  • The variance of the t-distribution is always greater than 1.
  • The shape of the t-distribution changes as the number of degrees of freedom changes. So, we have a family of $t$ distributions.
  • For small values of $n$, the distribution is considerably flatter around the center and more spread out than the normal distribution, but the t-distribution approaches the normal as the sample size increases without limit.
  • The mean and variance of the t distribution are $\mu=0$ and $\sigma^2 = \frac{v}{v-2}$, where $v>2$.

Common Application of t Distribution

  • t-tests are used to compared means between two groups
  • t-test are used to compared if a sample mean is significantly different from a hypothesized population mean.
  • t-values are used for constructing confidence intervals for population means when the population standard deviation is unknown.
  • Used to test the significance of the correlation and regression coefficients.
  • Used to construct confidence intervals of correlation and regression coefficients.
  • Used to estimate the standard error of various statistical models.

Assumptions of the t Distribution

The t-distribution relies on the following assumptions:

  • Independence: The observations in the sample must be independent of each other. This means that the value of one observation does not influence the value of another.
  • Normality: The population from which the sample is drawn should be normally distributed. However, the t-distribution is relatively robust to violations of this assumption, especially for larger sample sizes.
  • Homogeneity of Variance: If comparing two groups, the variances of the two populations should be equal. This assumption is important for accurate hypothesis testing.

Note that significant deviations from normality or unequal variances can affect the accuracy of the results. Therefore, it is always a good practice to check the assumptions before conducting a t-test and consider alternative non-parametric tests if the assumptions are not met.

statistics help: https://itfeature.com t distribution

Download Student’s t Distribution Table

https://rfaqs.com, https://gmstat.com