Probability Distribution Quiz 8

The post is about the MCQs Probability Distributions Quiz. There are 20 multiple-choice questions about probability distributions covering distributions such as discrete and continuous Binomial Probability Distribution, Bernoulli Probability Distribution, Poisson Probability Distribution, Poisson Probability, Distribution, Geometric Probability Distribution, Hypergeometric Probability Distribution, Chi-Square distribution, Normal distribution, and F-distribution. Let us start with the MCQs Discrete Probability Distributions Quiz.

MCQs Probability Distribution Quiz

Probability Distribution Quiz with Answers

1. If $X$ is a F-distributed random variable with $m$ and $n$ df, then $W=\frac{mX/n}{1+mX/n}$ has a

 
 
 
 

2. When the experiment is repeated a variable number of times to obtain a fixed number of success is

 
 
 
 

3. If $Z$ has a standard normal distribution, if $U$ has a chi-square distribution with $k$ degrees of freedom and if $Z$ and $U$ are independent then the distribution of $X=\frac{Z}{\sqrt{\frac{U}{\sqrt{k}}}}$ is

 
 
 
 

4. Which of the following can best be described as a normal distribution?

 
 
 
 

5. A random variable $Y$ has the following distribution
y:     -1   0   1    2
p(y):  3C 2C 0.4 0.1

The value of the constant C is

 
 
 
 

6. We look for a model, as realistic as possible, for a continuous random variable $X$ that represents the lifetime of a machine, and whose mean and variance are equal to 1 and 3, respectively. Which of the following distributions can be acceptable?

  • Uniform
  • Exponential
  • Gamma
  • Gaussian
  • The square of a Gaussian N(1, 3)
 
 
 
 

7. If the mean of the Chi-Square distribution is 4 then its variance is

 
 
 
 

8. The moment generating function of normal distribution is

 
 
 
 

9. In its standardized form, the normal distribution

 
 
 
 

10. You find a z-score of -1.99. Which statement(s) is/are true?

 
 
 
 

11. The time X taken by a cashier in a grocery store express lane to complete a transaction follows a normal distribution with a mean of 90 seconds and a standard deviation of 20 seconds. What is the first quartile of the distribution of X (in seconds)?

 
 
 
 

12. The distribution function of the random variable $X$ is given by $F_X(x)=1-\frac{1}{x^2}$ for $x \ge c$, 0 otherwise, where $c$ is a constant. What is the set of possible values of the constant $c$?

 
 
 
 

13. A test is administered annually. The test has a mean score of 150 and a standard deviation 20. If Chioma’s z-score is 1.50, what was her score on the test?

 
 
 
 

14. If you got a 75 on a test in a class with a mean score of 85 and a standard deviation of 5, the z-score of your test score would be

 
 
 
 

15. The moment generating function of Gamma distribution with parameter $\lambda$ and $k$ is

 
 
 
 

16. Expected values are properties of what?

 
 
 
 

17. The spread of the normal curve depends upon the value of:

 
 
 
 

18. The P-value for a normally distributed right-tailed test is P=0.042. Which of the following is INCORRECT?

 
 
 
 

19. Green sea turtles have normally distributed weights, measured in kilograms, with a mean of 134.5 and a variance of 49.0. A particular green sea turtle’s weight has a z-score of -2.4. What is the weight of this green sea turtle? Round to the nearest whole number.

 
 
 
 

20. The number of parameters in multivariate normal distribution having $p$ variables are

 
 
 
 

Online Probability Distribution Quiz

  • You find a z-score of -1.99. Which statement(s) is/are true?
  • Expected values are properties of what?
  • If you got a 75 on a test in a class with a mean score of 85 and a standard deviation of 5, the z-score of your test score would be
  • The spread of the normal curve depends upon the value of:
  • Which of the following can best be described as a normal distribution?
  • In its standardized form, the normal distribution
  • A test is administered annually. The test has a mean score of 150 and a standard deviation 20. If Chioma’s z-score is 1.50, what was her score on the test?
  • The P-value for a normally distributed right-tailed test is P=0.042. Which of the following is INCORRECT?
  • The time X taken by a cashier in a grocery store express lane to complete a transaction follows a normal distribution with a mean of 90 seconds and a standard deviation of 20 seconds. What is the first quartile of the distribution of X (in seconds)?
  • Green sea turtles have normally distributed weights, measured in kilograms, with a mean of 134.5 and a variance of 49.0. A particular green sea turtle’s weight has a z-score of -2.4. What is the weight of this green sea turtle? Round to the nearest whole number.  
  • We look for a model, as realistic as possible, for a continuous random variable $X$ that represents the lifetime of a machine, and whose mean and variance are equal to 1 and 3, respectively. Which of the following distributions can be acceptable?
    Uniform
    Exponential
    Gamma
    Gaussian
  • The square of a Gaussian N(1, 3)
  • The distribution function of the random variable $X$ is given by $F_X(x)=1-\frac{1}{x^2}$ for $x \ge c$, 0 otherwise, where $c$ is a constant. What is the set of possible values of the constant $c$?
  • A random variable $Y$ has the following distribution y:     -1   0   1    2 p(y):  3C 2C 0.4 0.1 The value of the constant C is
  • If $Z$ has a standard normal distribution, if $U$ has a chi-square distribution with $k$ degrees of freedom and if $Z$ and $U$ are independent then the distribution of $X=\frac{Z}{\sqrt{\frac{U}{\sqrt{k}}}}$ is
  • If $X$ is a F-distributed random variable with $m$ and $n$ df, then $W=\frac{mX/n}{1+mX/n}$ has a
  • The number of parameters in multivariate normal distribution having $p$ variables are
  • The moment generating function of Gamma distribution with parameter $\lambda$ and $k$ is
  • The moment generating function of normal distribution is
  • When the experiment is repeated a variable number of times to obtain a fixed number of successes is
  • If the mean of the Chi-Square distribution is 4 then its variance is

MCQs General Knowledge

Solved Binomial Distribution Questions

This post is about some solved Binomial distribution Questions. These solved binomial distribution questions make use of computation of (i) the exact probability case, (ii) at least case, (iii) at most case, and (iv) between cases.

Binomial-Probability-Distribution
Binomial distribution questions
  • The sum of all probabilities in the distribution sums up to 1
  • The probability of success in all $n$ trials is $p^n$
  • The probability of failure in all $n$ trials is $(1 – p)^n = q^n$
  • Probability of success in at least one trial = $P(X \ge 1) = 1 – P(X = 0) = 1 – q^n$.
  • Probability of at least $x$ successes = $P(X \ge x) = \sum\limits_{x} \binom{n}{x}p^xq^{n-x}\quad (x = x, x + 1,\cdots, n$)
  • Probability of at most $x$ successes = $P(X \le x) =\sum\limits_{x} \binom{n}{x}p^x q^{n-x}\quad (x=0,1,\cdots,x)$
  • If in $n$ trials, the experiment is repeated $N$ times, the expected frequencies are $N\cdot P(x)$ for $x = 0, 1, 2, 3, \cdots, n$.

Solved Binomial Distribution Questions

Question 1: A die is rolled 5 times and a 5 or 6 is considered a success. Find the probability of (i) no success, (ii) at least 2 successes, (iii) at least one but not more than 3 successes.

Solution:

The Sample Space is $S=\{1, 2, 3, 4, 5, 6\}$. Since the occurrence of 5 or 6 is considered a success, therefore, $p=\frac{2}{6}=\frac{1}{3} \Rightarrow q=1-p = 1-\frac{1}{3} = \frac{2}{3}$.

(i) No success

$n=5, p=\frac{1}{3}, q=\frac{2}{3}$, x=0$

\begin{align*}
P(X=x) &= \binom{n}{x}p^x q^{n-x}\\
P(X=0) &= \binom{5}{0} \left(\frac{1}{3}\right)^0\left(\frac{2}{3}\right)^5=0.1316
\end{align*}

(ii) At least 2 successes

\begin{align*}
P(X \ge 2) & = 1 – P(X<2)\\
&= 1 – [P(X=0) + P(X=1)]\\
&= 1- [0.13168 + 0.3292] = 0.5391
\end{align*}

(iii) At least one but not more than 3 successes

\begin{align*}
P(1 \le x \le 3) &= P(X=1) + P(X=2) + P(X=3)\\
&= 0.3292 + 0.3292 + 0.1646 = 0.823
\end{align*}

Question 2: Find the probability of getting (i) exactly 4 heads and (ii) not more than 4 heads when 6 coins are tossed.

Solution:

From the given information, $n = 6, x = 4, p = q = \frac{1}{2}$

(i) Exactly 4 heads

\begin{align*}
P(X=x) &= \binom{n}{x} p^x q^{n-x}\\
&= \binom{6}{4} \left(\frac{1}{2}\right)^4 \left(\frac{1}{2}\right)^{6-4} = 0.234
\end{align*}

(ii) Not more than 4 heads

\begin{align*}
P(X\le 4) & = 1 – p(X\ge 4)\\
&= 1 – P(X=4) + P(X=5) + P(X=6)
\end{align*}

Question 3: If 60% of the voters in a large district prefer candidate-A, what is the probability that in a sample of 12 voters, exactly 7 will prefer A?

Solution:

From given information in the questions, $p=06, q=0.4, n=12, x=7$

\begin{align*}
P(X=x)&= \binom{n}{x}p^x q^{n-x}\\
P(X=7) &= \binom{12}{7} (0.6)^7(0.4)^5&= 0.227
\end{align*}

Question 4: The probability that a patient recovers from a delicate heart operation is 0.9. What is the probability that exactly 5 of the next 7 patients having this operation survive?

Solution:

From the given information in the question, $n=7, x=5, p=0.9, q=0.10$

\begin{align*}
P(X=x)&= \binom{n}{x}p^x q^{n-x}\\
P(X=5) &= \binom{7}{5}(0.9)^5(0.1)^2 = 0.124
\end{align*}

Question 5: The incidence of occupational disease in an industry is such that the workmen have a 20% chance of suffering from it. What is the probability that out of 6 workmen (i) not more than 2, and (ii) 4 or more will catch the disease?

Solution:

From the given information in the questions

Probability of suffering from occupational disease = $\frac{20}{100}=\frac{1}{5}=0.20$

Probability of not suffering from occupational disease = $1 – \frac{1}{5} = \frac{4}{5}=0.80$

(i) Probability that out of 6 workers, not more than two will suffer

\begin{align*}
P(X\le 2) &= \binom{6}{0}\left(\frac{4}{5}\right)^0 \left(\frac{1}{5}\right)^6 + \binom{6}{1}\left(\frac{4}{5}\right)^1 \left(\frac{1}{5}\right)^5 + \binom{6}{2}\left(\frac{4}{5}\right)^2 \left(\frac{1}{5}\right)^4\\
&=0.01696
\end{align*}

(ii) Probability that out of 6 workers, 4 or more will suffer

\begin{align*}
P(X\ge 4) &= \binom{6}{4}\left(\frac{4}{5}\right)^4 \left(\frac{1}{5}\right)^2 + \binom{6}{5}\left(\frac{4}{5}\right)^5 \left(\frac{1}{5}\right)^1 + \binom{6}{6}\left(\frac{4}{5}\right)^6 \left(\frac{1}{5}\right)^0\\
&=0.90112
\end{align*}

Question 6: A multiple-choice has 15 questions, each with 4 possible answers of which only 1 is the correct answer. What is the probability that sheer guesswork yields from 5 to 10 correct answers?

Solution:

Probability of answering any question correctly: $p=\frac{1}{4}=0.25$

Probability of answering any question wrongly: $q=\frac{3}{4}=0.75$

\begin{align*}
P(5 \le x \le 10) &= P(X=5) + P(X=6) + \cdots + P(X=10)\\
&=\binom{15}{5}\left(\frac{1}{4}\right)^5\left(\frac{3}{4}\right)^{10}+\cdots + \binom{15}{10}\left(\frac{1}{4}\right)^5\left(\frac{3}{4}\right)^{5} \\
&= 0.31339
\end{align*}

Question 7: A commuter drivers to work each morning. The route she takes each day includes ten stoplights. Assume the probability each stoplight is red when she gets to it is 0.2 and that these stoplights (trials) are independent. What is the distribution of $X$, the number of times she must stop for a red light on her way to work? Evaluates $P(X=0) and $P(X<3).

Solution:

The distribution of $X$ is binomial because trials are independent. The probability of getting red spotlight (success) is 0.2 which remains the same, the number of trials is fixed ($n=10$).

The further information given in the Question is: $n=10, p=0.2, q=0.8$

\begin{align*}
P(X=0)&=\binom{10}{0} (0.2)^0(0.8)^{10} = 0.10737\\
P(X<3) &=\binom{10}{0} (0.2)^0(0.8)^{10} + \binom{10}{1} (0.2)^1(0.8)^{9} + \binom{10}{2} (0.2)^2(0.8)^{8} = 0.6777
\end{align*}

Application of Binomial Probability Distribution

  • Quality Control:
    • Assessing Product Reliability: Manufacturers use binomial distribution to estimate the probability of defective products in a batch, helping them maintain quality standards.
    • Predicting Failure Rates: By analyzing past data, companies predict the likelihood of equipment failure using a binomial probability distribution, aiding in preventive maintenance and reducing downtime.
  • Genetics:
    • Predicting Inheritance Patterns: In genetics, Binomial distribution helps to predict the probability of offspring inheriting specific traits based on parental genotypes.
    • Analyzing Genetic Mutations: Binomial distribution is used to study the frequency of genetic mutations in populations.
  • Medicine:
    • Clinical Trials: Binomial distribution is essential for designing and analyzing clinical trials, assessing the effectiveness of treatments, and determining the probability of side effects.
    • Epidemiology: Binomial distribution helps to model the spread of infectious diseases and predict outbreak risks.
  • Finance:
    • Risk Assessment: Financial institutions use Binomial Probability Distribution to assess the risk of loan defaults or investment failures.
    • Option Pricing: Binomial probability distribution is a key component of option pricing models, helping to determine the fair value of options contracts.
  • Social Sciences:
    • Survey Analysis: Binomial distribution is used to analyze survey data, such as predicting voter behavior or public opinion on specific issues.
    • Market Research: Binomial Probability Distribution helps businesses to understand consumer preferences and predict market trends.

Computer MCQs Online Test

Learn R Language

MCQs Discrete Probability Distributions 7

The post is about MCQs Discrete Probability Distributions. There are 20 multiple-choice questions about discrete probability distributions covering distributions such as Binomial Probability Distribution, Bernoulli Probability Distribution, Poisson Probability Distribution, Poisson Probability, Distribution, Geometric Probability Distribution, and Hypergeometric Probability Distribution. Let us start with the MCQs Discrete Probability Distributions Quiz.

Please go to MCQs Discrete Probability Distributions 7 to view the test

MCQs Discrete Probability Distributions

  • For a binomial distribution which of the following is true
  • The number of possible outcomes in a Bernoulli trial is
  • The mean and mode of the Binomial distribution are equal if
  • The hypergeometric random variable is a
  • The parameters of hypergeometric distribution are
  • The probability of success changes from trial to trial in
  • The probability of success does not change from trial to trial in
  • The successive trials are without replacement in
  • Which of the following could never be described by the Binomial distribution?
  • If $X$ is the number of trials for the negative binomial distribution with parameters $p$ and $k$ then its minimum value is
  • For a given binomial distribution with $n$ fixed if $p=0.5$ then
  • The necessary and sufficient condition of the hypergeometric distribution is
  • Which of the following is the most reasonable condition for the binomial approximation to the hypergeometric distribution?
  • Suppose, we have a Poisson distribution with $\lambda$ equal to 2 then the probability of having exactly 10 occurrences is
  • Which of the following is a characteristic of the probability distribution for any random variable
  • In what case would the Poisson distribution be a good approximation of the binomial distribution
  • The mode of the geometric distribution is
  • The binomial distribution may be approximated by a Poisson distribution if
  • In a Binomial distribution, if $n$ is the number of trials and $p$ is the probability of success, then the mean value is given by
  • In a binomial probability distribution, the sum of the probability of failure and the probability of success is always
MCQs Discrete Probability Distributions

Learn R Language, SPSS Data Analysis