Solved Binomial Distribution Questions

This post is about some solved Binomial distribution Questions. These solved binomial distribution questions make use of computation of (i) the exact probability case, (ii) at least case, (iii) at most case, and (iv) between cases.

Binomial-Probability-Distribution
Binomial distribution questions
  • The sum of all probabilities in the distribution sums up to 1
  • The probability of success in all $n$ trials is $p^n$
  • The probability of failure in all $n$ trials is $(1 – p)^n = q^n$
  • Probability of success in at least one trial = $P(X \ge 1) = 1 – P(X = 0) = 1 – q^n$.
  • Probability of at least $x$ successes = $P(X \ge x) = \sum\limits_{x} \binom{n}{x}p^xq^{n-x}\quad (x = x, x + 1,\cdots, n$)
  • Probability of at most $x$ successes = $P(X \le x) =\sum\limits_{x} \binom{n}{x}p^x q^{n-x}\quad (x=0,1,\cdots,x)$
  • If in $n$ trials, the experiment is repeated $N$ times, the expected frequencies are $N\cdot P(x)$ for $x = 0, 1, 2, 3, \cdots, n$.

Solved Binomial Distribution Questions

Question 1: A die is rolled 5 times and a 5 or 6 is considered a success. Find the probability of (i) no success, (ii) at least 2 successes, (iii) at least one but not more than 3 successes.

Solution:

The Sample Space is $S=\{1, 2, 3, 4, 5, 6\}$. Since the occurrence of 5 or 6 is considered a success, therefore, $p=\frac{2}{6}=\frac{1}{3} \Rightarrow q=1-p = 1-\frac{1}{3} = \frac{2}{3}$.

(i) No success

$n=5, p=\frac{1}{3}, q=\frac{2}{3}$, x=0$

\begin{align*}
P(X=x) &= \binom{n}{x}p^x q^{n-x}\\
P(X=0) &= \binom{5}{0} \left(\frac{1}{3}\right)^0\left(\frac{2}{3}\right)^5=0.1316
\end{align*}

(ii) At least 2 successes

\begin{align*}
P(X \ge 2) & = 1 – P(X<2)\\
&= 1 – [P(X=0) + P(X=1)]\\
&= 1- [0.13168 + 0.3292] = 0.5391
\end{align*}

(iii) At least one but not more than 3 successes

\begin{align*}
P(1 \le x \le 3) &= P(X=1) + P(X=2) + P(X=3)\\
&= 0.3292 + 0.3292 + 0.1646 = 0.823
\end{align*}

Question 2: Find the probability of getting (i) exactly 4 heads and (ii) not more than 4 heads when 6 coins are tossed.

Solution:

From the given information, $n = 6, x = 4, p = q = \frac{1}{2}$

(i) Exactly 4 heads

\begin{align*}
P(X=x) &= \binom{n}{x} p^x q^{n-x}\\
&= \binom{6}{4} \left(\frac{1}{2}\right)^4 \left(\frac{1}{2}\right)^{6-4} = 0.234
\end{align*}

(ii) Not more than 4 heads

\begin{align*}
P(X\le 4) & = 1 – p(X\ge 4)\\
&= 1 – P(X=4) + P(X=5) + P(X=6)
\end{align*}

Question 3: If 60% of the voters in a large district prefer candidate-A, what is the probability that in a sample of 12 voters, exactly 7 will prefer A?

Solution:

From given information in the questions, $p=06, q=0.4, n=12, x=7$

\begin{align*}
P(X=x)&= \binom{n}{x}p^x q^{n-x}\\
P(X=7) &= \binom{12}{7} (0.6)^7(0.4)^5&= 0.227
\end{align*}

Question 4: The probability that a patient recovers from a delicate heart operation is 0.9. What is the probability that exactly 5 of the next 7 patients having this operation survive?

Solution:

From the given information in the question, $n=7, x=5, p=0.9, q=0.10$

\begin{align*}
P(X=x)&= \binom{n}{x}p^x q^{n-x}\\
P(X=5) &= \binom{7}{5}(0.9)^5(0.1)^2 = 0.124
\end{align*}

Question 5: The incidence of occupational disease in an industry is such that the workmen have a 20% chance of suffering from it. What is the probability that out of 6 workmen (i) not more than 2, and (ii) 4 or more will catch the disease?

Solution:

From the given information in the questions

Probability of suffering from occupational disease = $\frac{20}{100}=\frac{1}{5}=0.20$

Probability of not suffering from occupational disease = $1 – \frac{1}{5} = \frac{4}{5}=0.80$

(i) Probability that out of 6 workers, not more than two will suffer

\begin{align*}
P(X\le 2) &= \binom{6}{0}\left(\frac{4}{5}\right)^0 \left(\frac{1}{5}\right)^6 + \binom{6}{1}\left(\frac{4}{5}\right)^1 \left(\frac{1}{5}\right)^5 + \binom{6}{2}\left(\frac{4}{5}\right)^2 \left(\frac{1}{5}\right)^4\\
&=0.01696
\end{align*}

(ii) Probability that out of 6 workers, 4 or more will suffer

\begin{align*}
P(X\ge 4) &= \binom{6}{4}\left(\frac{4}{5}\right)^4 \left(\frac{1}{5}\right)^2 + \binom{6}{5}\left(\frac{4}{5}\right)^5 \left(\frac{1}{5}\right)^1 + \binom{6}{6}\left(\frac{4}{5}\right)^6 \left(\frac{1}{5}\right)^0\\
&=0.90112
\end{align*}

Question 6: A multiple-choice has 15 questions, each with 4 possible answers of which only 1 is the correct answer. What is the probability that sheer guesswork yields from 5 to 10 correct answers?

Solution:

Probability of answering any question correctly: $p=\frac{1}{4}=0.25$

Probability of answering any question wrongly: $q=\frac{3}{4}=0.75$

\begin{align*}
P(5 \le x \le 10) &= P(X=5) + P(X=6) + \cdots + P(X=10)\\
&=\binom{15}{5}\left(\frac{1}{4}\right)^5\left(\frac{3}{4}\right)^{10}+\cdots + \binom{15}{10}\left(\frac{1}{4}\right)^5\left(\frac{3}{4}\right)^{5} \\
&= 0.31339
\end{align*}

Question 7: A commuter drivers to work each morning. The route she takes each day includes ten stoplights. Assume the probability each stoplight is red when she gets to it is 0.2 and that these stoplights (trials) are independent. What is the distribution of $X$, the number of times she must stop for a red light on her way to work? Evaluates $P(X=0) and $P(X<3).

Solution:

The distribution of $X$ is binomial because trials are independent. The probability of getting red spotlight (success) is 0.2 which remains the same, the number of trials is fixed ($n=10$).

The further information given in the Question is: $n=10, p=0.2, q=0.8$

\begin{align*}
P(X=0)&=\binom{10}{0} (0.2)^0(0.8)^{10} = 0.10737\\
P(X<3) &=\binom{10}{0} (0.2)^0(0.8)^{10} + \binom{10}{1} (0.2)^1(0.8)^{9} + \binom{10}{2} (0.2)^2(0.8)^{8} = 0.6777
\end{align*}

Application of Binomial Probability Distribution

  • Quality Control:
    • Assessing Product Reliability: Manufacturers use binomial distribution to estimate the probability of defective products in a batch, helping them maintain quality standards.
    • Predicting Failure Rates: By analyzing past data, companies predict the likelihood of equipment failure using a binomial probability distribution, aiding in preventive maintenance and reducing downtime.
  • Genetics:
    • Predicting Inheritance Patterns: In genetics, Binomial distribution helps to predict the probability of offspring inheriting specific traits based on parental genotypes.
    • Analyzing Genetic Mutations: Binomial distribution is used to study the frequency of genetic mutations in populations.
  • Medicine:
    • Clinical Trials: Binomial distribution is essential for designing and analyzing clinical trials, assessing the effectiveness of treatments, and determining the probability of side effects.
    • Epidemiology: Binomial distribution helps to model the spread of infectious diseases and predict outbreak risks.
  • Finance:
    • Risk Assessment: Financial institutions use Binomial Probability Distribution to assess the risk of loan defaults or investment failures.
    • Option Pricing: Binomial probability distribution is a key component of option pricing models, helping to determine the fair value of options contracts.
  • Social Sciences:
    • Survey Analysis: Binomial distribution is used to analyze survey data, such as predicting voter behavior or public opinion on specific issues.
    • Market Research: Binomial Probability Distribution helps businesses to understand consumer preferences and predict market trends.

Computer MCQs Online Test

Learn R Language

MCQs Discrete Probability Distributions 7

The post is about MCQs Discrete Probability Distributions. There are 20 multiple-choice questions about discrete probability distributions covering distributions such as Binomial Probability Distribution, Bernoulli Probability Distribution, Poisson Probability Distribution, Poisson Probability, Distribution, Geometric Probability Distribution, and Hypergeometric Probability Distribution. Let us start with the MCQs Discrete Probability Distributions Quiz.

Online MCQs about Discrete Probability Distributions

1. In what case would the Poisson distribution be a good approximation of the binomial distribution

 
 
 
 

2. The necessary and sufficient condition of the hypergeometric distribution is

 
 
 
 

3. For a given binomial distribution with $n$ fixed if $p=0.5$ then

 
 
 
 

4. In a binomial probability distribution, the sum of the probability of failure and the probability of success is always

 
 
 
 

5. In a Binomial distribution, if $n$ is the number of trials and $p$ is the probability of success, then the mean value is given by

 
 
 
 

6. The probability of success does not change from trial to trial in

 
 
 
 

7. The probability of success changes from trial to trial in

 
 
 
 

8. Which of the following could never be described by the Binomial distribution?

 
 
 
 

9. If $X$ is the number of trials for the negative binomial distribution with parameters $p$ and $k$ then its minimum value is

 
 
 
 

10. Suppose, we have a Poisson distribution with $\lambda$ equal to 2 then the probability of having exactly 10 occurrences is

 
 
 
 

11. Which of the following is a characteristic of the probability distribution for any random variable

 
 
 
 

12. For a binomial distribution which of the following is true

 
 
 
 

13. The successive trials are without replacement in

 
 
 
 

14. The parameters of hypergeometric distribution are

 
 
 
 

15. The number of possible outcomes in a Bernoulli trial is

 
 
 
 

16. The binomial distribution may be approximated by a Poisson distribution if

 
 
 
 

17. The mean and mode of the Binomial distribution are equal if

 
 
 
 

18. The hypergeometric random variable is a

 
 
 
 

19. Which of the following is the most reasonable condition for the binomial approximation to the hypergeometric distribution?

 
 
 
 

20. The mode of the geometric distribution is

 
 
 
 

MCQs Discrete Probability Distributions

  • For a binomial distribution which of the following is true
  • The number of possible outcomes in a Bernoulli trial is
  • The mean and mode of the Binomial distribution are equal if
  • The hypergeometric random variable is a
  • The parameters of hypergeometric distribution are
  • The probability of success changes from trial to trial in
  • The probability of success does not change from trial to trial in
  • The successive trials are without replacement in
  • Which of the following could never be described by the Binomial distribution?
  • If $X$ is the number of trials for the negative binomial distribution with parameters $p$ and $k$ then its minimum value is
  • For a given binomial distribution with $n$ fixed if $p=0.5$ then
  • The necessary and sufficient condition of the hypergeometric distribution is
  • Which of the following is the most reasonable condition for the binomial approximation to the hypergeometric distribution?
  • Suppose, we have a Poisson distribution with $\lambda$ equal to 2 then the probability of having exactly 10 occurrences is
  • Which of the following is a characteristic of the probability distribution for any random variable
  • In what case would the Poisson distribution be a good approximation of the binomial distribution
  • The mode of the geometric distribution is
  • The binomial distribution may be approximated by a Poisson distribution if
  • In a Binomial distribution, if $n$ is the number of trials and $p$ is the probability of success, then the mean value is given by
  • In a binomial probability distribution, the sum of the probability of failure and the probability of success is always
MCQs Discrete Probability Distributions

Learn R Language, SPSS Data Analysis

Use of t Distribution in Statistics

The post is about the use of t Distribution in Statistics. The t distribution, also known as the Student’s t-distribution, is a probability distribution used to estimate population parameter(s) when the sample size is small or when the population variance is unknown. The t distribution is similar to the normal bell-shaped distribution but has heavier tails. This means that it gives a lower probability to the center and a higher probability to the tails than the standard normal distribution.

The t distribution is particularly useful as it accounts for the extra variability that comes with small sample sizes, making it a more accurate tool for statistical analysis in such cases.

The following are the commonly used situations in which t distribution is used:

Use of t Distribution: Confidence Intervals

The t distribution is widely used in constructing confidence intervals. In most of the cases, The width of the confidence intervals depends on the degrees of freedom (sample size – 1):

  1. Confidence Interval for One Sample Mean
    $$\overline{X} \pm t_{\frac{\alpha}{2}} \left(\frac{s}{\sqrt{n}} \right)$$
    where $t_{\frac{\alpha}{2}}$ is the upper $\frac{\alpha}{2}$ point of the t distribution with $v=n-1$ degrees of freedom and $s^2$ is the unbiased estimate of the population variance obtained from the sample, $s^2 = \frac{\Sigma (X_i-\overline{X})^2}{n-1} = \frac{\Sigma X^2 – \frac{(\Sigma X)^2}{n}}{n-1}$
  2. Confidence Interval for Difference between Two Independent Samples MeanL
    Let $X_{11}, X_{12}, \cdots, X_{1n_1}$ and $X_{21}, X_{22}, \cdots, X_{2n_2}$ be the random samples of size $n_1$ and $n_2$ from normal population with variances $\sigma_1^2$ and $\sigma_2^2$, respectively. Let $\overline{X}_1$ and $\overline{X}_2$ be the respectively sample means. The confidence interval for the difference between two population mean $\mu_1 – \mu_2$ when the population variances $\sigma_1^2$ and $\sigma_2^2$ are unknown and the sample sizes $n_1$ and $n_2$ are small (less than 30) is
    $$(\overline{X}_1 – \overline{X}_2 \pm t_{\frac{\alpha}{2}}(S_p)\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$
    where $S_p = \frac{(n_1 – 1)s_1^2 + (n_2-1)s_2^2}{n_1-n_2-2}$ (Pooled Variance), where $s_1^2$ and $s_2^2$ are the unbiased estimates of population variances $\sigma_1^2$ and $\sigma_2^2$, respectively.
  3. Confidence Interval for Paired Observations
    The confidence interval for $\mu_d=\mu_1-\mu_2$ is
    $$\overline{d} \pm t_{\frac{\alpha}{2}} \frac{S_d}{\sqrt{n}}$$
    where $\overline{d}$ and $S_d$ are the mean and standard deviation of the differences of $n$ pairs of measurements and $t_{\frac{\alpha}{2}}$ is the upper $\frac{\alpha}{2}$ point of the distribution with $n-1$ degrees of freedom.

Use of t Distribution: Testing of Hypotheses

The t-tests are used to compare means between two groups or to test if a sample mean is significantly different from a hypothesized population mean.

  1. Testing of Hypothesis for One Sample Mean
    It compares the mean of a single sample to a known population mean when the population standard deviation is known,
    $$t=\frac{\overline{X}-\mu}{\frac{s}{\sqrt{n}}}$$
  2. Testing of Hypothesis for Difference between Two Population Means
    For two random samples of sizes $n_1$ and $n_2$ drawn from two normal population having equal variances ($\sigma_1^2 = \sigma_2^2 = \sigma^2$), the test statistics is
    $$t=\frac{\overline{X}_1 – \overline{X}_2}{S_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$$
    with $v=n_1+n_2-2$ degrees of freedom.
  3. Testing of Hypothesis for Paird/Dependent Observations
    To test the null hypothesis ($\mu_d = \mu_o$) the statistics is
    $$t=\frac{\overline{d} – d_o}{\frac{s_d}{\sqrt{n}}}$$
    with $v=n-1$ degrees of freedom.
  4. Testing the Coefficient of Correlation
    For $n$ pairs of observations (X, Y), the sample correlation coefficient, the test of significance (testing of hypothesis) for the correlation coefficient is
    $$t=\frac{r\sqrt{n-2}}{\sqrt{1-r^2}}$$
    with $v=n-2$ degrees of freedom.
  5. Testing the Regression Coefficients
    The t distribution is used to test the significance of regression coefficients in linear regression models. It helps determine whether a particular independent variable ($X$) has a significant effect on the dependent variable ($Y$). The regression coefficient can be tested using the statistic
    $$t=\frac{\hat{\beta} – \beta}{\sqrt{SE_{\hat{\beta}}}}$$
    where $SE_{\hat{\beta}} = \frac{S_{Y\cdot X}}{\sqrt{\Sigma (X-\overline{X})^2}}=\frac{\sqrt{\frac{\Sigma Y^2 – \hat{\beta}_o \Sigma X – \hat{\beta}_1 \Sigma XY }{n-2} } }{S_X \sqrt{n-1}}$

The t distribution is a useful statistical tool for data analysis as it allows the user to make inferences/conclusions about population parameters even when there is limited information about the population.

MCQs in Statistics, Test Preparation MCQs, R and Data Analysis

https://itfeature.com use of t distribution

Frequently Asked Questions about the Use of t Distribution

  • What is t distribution?
  • Discuss what type of confidence intervals can be constructed by using t distribution.
  • Discuss what type of hypothesis testing can be performed by using t distribution.
  • How does the t distribution resemble the normal distribution?
  • What is meant by small sample size and unknown population variance?

Poisson Probability Distribution

The Poisson Probability Distribution is discrete and deals with events that can only take on specific, whole number values (like the number of cars passing a certain point in an hour). Poisson Probability Distribution models the probability of a given number of events occurring in a fixed interval of time or space, given a known average rate of occurrence ($\mu$). The events must be independent of each other and occur randomly.

The Poisson probability function gives the probability for the number of events that occur in a given interval (often a period of time) assuming that events occur at a constant rate during the interval.

Poisson Random Variable

The Poisson random variable satisfies the following conditions:

  • The number of successes in two disjoint time intervals is independent
  • The probability of success during a small time interval is proportional to the entire length of the time interval.
  • The probability of two or more events occurring in a very short interval is negligible.

Apart from disjoint time intervals, the Poisson random variable is also applied to disjoint regions of space.

Applications of Poisson Probability Distribution

The following are a few of the applications of Poisson Probability Distribution:

  • The number of deaths by horse kicking in the Prussian Army (it was the first application).
  • Birth defects and genetic mutations.
  • Rare diseases (like Leukemia, but not AIDS because it is infectious and so not independent), especially in legal cases.
  • Car accidents
  • Traffic flow and ideal gap distance
  • Hairs found in McDonald’s hamburgers
  • Spread of an endangered animal in Africa
  • Failure of a machine in one month

The formula of Poisson Distribution

The probability distribution of a Poisson random variable $X$ representing the number of successes occurring in a given time interval or specified region of space is given by

\begin{align*}
P(X=x)&=\frac{e^{-\mu}\mu^x}{x!}\,\,\quad x=0,1,2,\cdots
\end{align*}

where $P(X=x)$ is the probability of $x$ events occurring, $e$ is the base of the natural logarithm (~2.71828), $\mu$ is the mean number of successes in the given time interval (or region of space), $x$ is the number of events we are interested in, and $x!$ is the factorial of $x$.

Poisson Probability Distribution

Mean and Variance of Poisson Distribution

If $\mu$ is the average number of successes occurring in a given time interval (or region) in the Poisson distribution, then the mean and the variance of the Poisson distribution are both equal to $\mu$. That is,

\begin{align*}
E(X) &= \mu\\
V(X) &= \sigma^2 =\mu
\end{align*}

A Poisson distribution has only one parameter, $\mu$ is needed to determine the probability of an event. For binomial experiments involving rare events (small $p$) and large values of $n$, the distribution of $X=$ the number of success out of $n$ trials is binomial, but it is also well approximated by the Poisson distribution with mean $\mu=np$.

When to Use Poisson Probability Distribution

The Poisson distribution is useful in various scenarios:

  • Modeling Rare Events: Like accidents, natural disasters, or equipment failures.
  • Counting Events in a Fixed Interval: Such as the number of customers arriving at a store in an hour, or the number of calls to a call center in a minute.
  • Approximating the Binomial Distribution: When the number of trials ($n$) is large and the probability of success ($p$) is small.

It is important to note that

  • The Poisson distribution is related to the exponential distribution, which models the time between events.
  • It is a fundamental tool in probability theory and statistics, with applications in fields like operations research, queuing theory, and reliability engineering.

R and Data Analysis, Test Preparation MCQs

Frequently Asked Questions about Poisson Distribution

  1. What is the Poisson Random Variable?
  2. What is Poisson Probability Distribution?
  3. Write the Formula of Poisson Probability Distribution.
  4. Poisson distribution is related to what distribution?
  5. Give some important applications of Poisson Distribution.
  6. Describe the general situations in which Poisson distribution can be used.
  7. Name the distribution that has equal mean and variance.
  8. What are the required conditions for poison random variables?