Logistic regression Introduction (2015)

Logistic regression was introduced in the 1930s by Ronald Fisher and Frank Yates and was first proposed in the 1970s as an alternative technique to overcome the limitations of ordinary least square regression in handling dichotomous outcomes. It is a type of probabilistic statistical classification model which is a non-linear regression model, and can be converted into a linear model by using a simple transformation. It is used to predict a binary response categorical dependent variable, based on one or more predictor variables. That is, it is used in estimating empirical values of the parameters in a model. Here response variable assumes a value as zero or one i.e., dichotomous variable.

Logistic Regression Model

It is the regression model of $b$, $a$ logistic regression model is written as

  \[\pi=\frac{1}{1+e^{-[\alpha +\sum_{i=1}^k \beta_i X_{ij}]}}\]

where $\alpha$ and $\beta_i$ are the intercept and slope respectively.

Logistic Regression

So in simple words, logistic regression is used to find the probability of the occurrence of the outcome of interest.  For example, if we want to find the significance of the different predictors (gender, sleeping hours, took part in extracurricular activities, etc.), on a binary response (pass or fail in exams coded as 0 and 1), for this kind of problems we used logistic regression.

By using a transformation this nonlinear regression model can be easily converted into a linear model. As $\pi$ is the probability of the events in which we are interested if we take the ratio of the probability of success and failure then the model becomes a linear model.

\[ln(y)=ln(\frac{\pi}{1-\pi})\]

The natural log of odds can convert the logistics regression model into a linear form.

Binary Logistic Regression in Minitab

References:

Discovering Odds Ratio

An odds ratio is a relative measure of effect, allowing the comparison of the intervention group of a study relative to the comparison or placebo group. The odds ratio helps quantify the strength and direction of the relationship between two groups or conditions.

Introduction Odds Ratio

The odds ratio (OR) is a measure of association used in statistics to compare the odds of an event occurring in one group to the odds of it occurring in another group. It is commonly used in case-control studies and logistic regression.

  • an OR of 1 indicates no difference between groups,
  • an OR greater than 1 suggests higher odds in the first group, and
  • an OR less than 1 suggests lower odds in the first group.

Medical students, students from clinical and psychological sciences, professionals allied to medicine enhancing their understanding and learning of medical literature, and researchers from different fields of life usually encounter Odds Ratio (OR) throughout their careers.

When computing the OR, one would do:

  • The numerator is the odds in the intervention arm
  • The denominator is the odds in the control or placebo arm= OR

Calculating Odds Ratio

The ratio of the probability of success and failure is known as the odds. If the probability of an event is $P_1$ then the odds are:
\[OR=\frac{p_1}{1-p_1}\]

If the outcome is the same in both groups, the ratio will be 1, implying that there is no difference between the two arms of the study. However, if the $OR>1$, the control group is better than the intervention group while, if the $OR<1$, the intervention group is better than the control group.

The Odds Ratio is the ratio of two odds that can be used to quantify how much a factor is associated with the response factor in a given model. If the probabilities of occurrences of an event are $P_1$ (for the first group) and $P_2$ (for the second group), then the OR is:
\[OR=\frac{\frac{p_1}{1-p_1}}{\frac{p_2}{1-p_2}}\]

If predictors are binary then the OR for $i$th factor is defined as
\[OR_i=e^{\beta}_i\]

Odds Ratio

Real-Life Examples of Odds Ratio

  1. Medical Researches
    • Consider we are interested in comparing the odds of developing a disease (e.g., lung cancer) in smokers versus non-smokers. Suppose, the OR is 2.5, it means smokers have 2.5 times higher odds of developing lung cancer compared to non-smokers.
  2. Public Health
    • Suppose, we are interested in assessing the effectiveness of a vaccine. For example, comparing the odds of contracting a disease (e.g., COVID-19) in vaccinated versus unvaccinated individuals. An OR less than 1 would indicate the vaccine reduces the odds of infection.
  3. Social Sciences
    • Consider we are interested in studying the odds of students passing an exam based on attendance. For instance, if students who attend extra tutoring have an OR of 3.0 for passing, they have 3 times higher odds of passing compared to those who don’t attend.
  4. Marketing
    • Suppose we need to analyze the odds of customers purchasing a product after seeing an advertisement versus not seeing it. An OR greater than 1 suggests the ad increases the likelihood of purchase.
  5. Environmental Studies
    • Evaluating the odds of developing asthma in people living in high-pollution areas compared to those in low-pollution areas. An OR greater than 1 would indicate higher odds of asthma in high-pollution areas.

The regression coefficient $b_1$ from logistic regression is the estimated increase in the log odds of the dependent variable per unit increase in the value of the independent variable. In other words, the exponential function of the regression coefficients $(e^{b_1})$ in the OR is associated with a one-unit increase in the independent variable.

Online MCQs about Economics with Answers

R Programming Language Lectures

Application of Regression in Medical: A Quick Guide (2024)

The application of Regression cannot be ignored, as regression is a powerful statistical tool widely used in medical research to understand the relationship between variables. It helps identify risk factors, predict outcomes, and optimize treatment strategies.

Considering the application of regression analysis in medical sciences, Chan et al. (2006) used multiple linear regression to estimate standard liver weight for assessing adequacies of graft size in live donor liver transplantation and remnant liver in major hepatectomy for cancer. Standard liver weight (SLW) in grams, body weight (BW) in kilograms, gender (male=1, female=0), and other anthropometric data of 159 Chinese liver donors who underwent donor right hepatectomy were analyzed. The formula (fitted model)

 \[SLW = 218 + 12.3 \times BW + 51 \times gender\]

 was developed with a coefficient of determination $R^2=0.48$.

Application of Regression Analysis

These results mean that in Chinese people, on average, for each 1-kg increase of BW, SLW increases about 12.3 g, and, on average, men have a 51-g higher SLW than women. Unfortunately, SEs and CIs for the estimated regression coefficients were not reported. Using Formula 6 in their article, the SLW for Chinese liver donors can be estimated if BW and gender are known. About 50% of the variance of SLW is explained by BW and gender.

The regression analysis helps in:

  • Identifying risk factors: Determine which factors contribute to the development of a disease (For example, gender, age, smoking, and blood pressure for heart disease).
  • Predicting disease occurrence: Estimate the likelihood of a patient developing a disease based on specific risk factors. for example, logistic regression is used to predict the risk of diabetes based on factors like BMI, age, and family history.

The following types of regression models are widely used in medical sciences:

  • Linear regression: Used when the outcome variable is continuous (e.g., blood pressure, cholesterol levels).
  • Logistic regression: Used when the outcome variable is binary (e.g., disease present/absent, survival/death).
  • Cox proportional hazards regression: Used for survival analysis (time to event data)

 Some other related articles (Application of Regression Analysis in Medical Sciences)

Reference of Article

  • Chan SC, Liu CL, Lo CM, et al. (2006). Estimating liver weight of adults by body weight and gender. World J Gastroenterol 12, 2217–2222.

R Programming Lectures