PROC in SAS

This comprehensive Q&A-style guide about PROC in SAS Software breaks down fundamental SAS PROCs used in statistical analysis and data management. Learn:
What PROCs do and their key functions.
Differences between PROC MEANS & SUMMARY.
When to use PROC MIXED for mixed-effects models.
CANCORR vs CORR for multivariate vs bivariate analysis.
Sample PROC MIXED code with required statements.
How PROC PRINT & CONTENTS help inspect data.

Ideal for students learning SAS Programming and statisticians performing advanced analyses. Includes ready-to-use code snippets and easy comparisons!

Q&A PROC in SAS Software

Explain the functions of PROC in SAS.

PROC (Procedure) is a fundamental component of SAS programming that performs specific data analysis, reporting, or data management tasks. Each PROC is a pre-built routine designed to handle different statistical, graphical, or data processing operations. The key functions of PROC in SAS are:

  • Data Analysis & Statistics: PROCs perform statistical computations, including:
    • Descriptive Statistics (PROC MEANS, PROC SUMMARY, PROC UNIVARIATE)
    • Hypothesis Testing (PROC TTEST, PROC ANOVA, PROC GLM)
    • Regression & Modeling (PROC REG, PROC LOGISTIC, PROC MIXED)
    • Multivariate Analysis (PROC FACTOR, PROC PRINCOMP, PROC DISCRIM)
  • Data Management & Manipulation
    • Sorting (PROC SORT)
    • Transposing Data (PROC TRANSPOSE)
    • Merging & Combining Datasets (PROC SQL, PROC APPEND)
  • Reporting & Output Generation
    • Printing Data (PROC PRINT)
    • Creating Summary Reports (PROC TABULATE, PROC REPORT)
    • Generating Graphs (PROC SGPLOT, PROC GCHART)
  • Quality Control & Data Exploration
    • Checking Data Structure (PROC CONTENTS)
    • Identifying Missing Data (PROC FREQ with MISSING option)
    • Sampling Data (PROC SURVEYSELECT)
  • Advanced Analytics & Machine Learning
    • Cluster Analysis (PROC CLUSTER)
    • Time Series Forecasting (PROC ARIMA)
    • Text Mining (PROC TEXTMINER)

    PROCs are the backbone of SAS programming, enabling data analysis, manipulation, and reporting with minimal coding. Choosing the right PROC depends on the task—whether it’s statistical modeling, data cleaning, or generating business reports.

    Explain the Difference Between PROC MEANS and PROC SUMMARY.

    Both PROC MEANS and PROC SUMMARY in SAS compute descriptive statistics (e.g., mean, sum, min, max), but they differ in default behavior and output:

    • Default Output
      PROC MEANS: Automatically prints results in the output window.
      PROC SUMMARY: Does not print by default; requires the PRINT option.
    • Dataset Creation
      Both can store results in a dataset using OUT=.
    • Handling of N Observations
      PROC MEANS: Includes a default N (count) statistic.
      PROC SUMMARY: Requires explicit specification of statistics.
    • Usage Context
      Use PROC MEANS for quick interactive analysis.
      Use PROC SUMMARY for programmatic, non-printed summaries.

    The PROC MEANS is more user-friendly for direct analysis, while PROC SUMMARY in SAS offers finer control for automated reporting.

    Under the PROC MEANS, there is only a subgroup that is created only when there is a BY statement that is being used, and the input data is previously well-sorted out with the help of BY variables.

    Under the PROC SUMMARY in SAS, there is a statistic that gets produced automatically for all the subgroups. It gives all sorts of information that runs together.

    Introduction to PROC in SAS Software

    What is the PROC MIXED Procedure in SAS STAT used for?

    The PROC blended system in SAS/STAT fits specific blended models. The Mixed version can allow for one-of-a-kind assets of variation in information, it allows for one-of-a-kind variances for corporations, and takes into account the correlation structure of repeated measurements.

    PROC MIXED is essential for analyzing data with correlated observations or hierarchical structures. Its flexibility in modeling random effects and covariance makes it a cornerstone of advanced statistical analysis in SAS.

    PROC MIXED is a powerful SAS procedure for fitting linear mixed-effects models, which account for both fixed and random effects in data. It is widely used for analyzing hierarchical, longitudinal, or clustered data where observations are correlated (e.g., repeated measures, multilevel data).

    What is the Difference Between CANCORR and CORR Procedures in SAS STAT?

    Both procedures analyze relationships between variables, but they serve distinct purposes:

    1. PROC CORR (Correlation Analysis): Computes simple pairwise correlations (e.g., Pearson, Spearman). It is used to examine linear associations between two or more variables or when there is no distinction between dependent/independent variables. The output from different statistical software is in the form of the correlation matrix, p-values, and descriptive statistics. The code below tests how height, weight, and age are linearly related.

      PROC CORR DATA=my_data;
      VAR height weight age;
      RUN;
    2. PROC CANCORR (Canonical Correlation Analysis): Analyzes multivariate relationships between two sets of variables. It is used to find linear combinations (canonical variables) that maximize correlation between sets.
      It is also useful for dimension reduction (e.g., linking psychological traits to behavioral measures). The output from different statistical software is Canonical correlations, coefficients, and redundancy analysis.

      PROC CANCORR DATA=my_data;
      VAR set1_var1 set1_var2; /* First variable set */
      WITH set2_var1 set2_var2; /* Second variable set */
      RUN;

    Key Differences Summary

    FeaturePROC CORRPROC CANCORR
    Analysis TypeBivariate correlationsMultivariate (set-to-set)
    VariablesSingle list (no grouping)Two distinct sets (VAR & WITH)
    Output FocusPairwise coefficients (e.g., r)Canonical correlations (ρ)
    ComplexitySimple, descriptiveAdvanced, inferential

    Write a sample program using the PROC MIXED procedure, including all the required statements

    proc mixed data=SASHELP.IRIS plots=all;
    class species;
    model petallength= /;
    run;

    Describe what PROC PRINT and PROC CONTENTS are used for.

    PROC contents displays the information about an SAS dataset, while PROC print ensures that the data is correctly read into the SAS dataset.

    1. PROC CONTENTS: Displays metadata about a SAS dataset (structure, variables, attributes). Its key uses are:
    • Check variable names, types (numeric/character), lengths, and formats.
    • Identify dataset properties (e.g., number of observations, creation date).
    • Debug data import/export issues (e.g., mismatched formats).

    The general syntax of PROC CONTENTS is

    PROC CONTENTS DATA=your_data;  
    RUN;
    1. PROC PRINT: Displays raw data from a SAS dataset to the output window. Its key uses are:
    • View actual observations and values.
    • Verify data integrity (e.g., missing values, unexpected codes).
    • Quick preview before analysis.

    The general Syntax of PROC PRINT is

    PROC PRINT DATA=your_data (OBS=10);  /* Prints first 10 rows */ 
       VAR var1 var2;                                              /* Optional: limit columns */
    RUN;

    Functions in R Programming

    Leave a Comment

    Discover more from Statistics for Data Science & Analytics

    Subscribe now to keep reading and get access to the full archive.

    Continue reading