Empirical Rule

The Empirical Rule (also known as the 68-95-99.7 Rule) is a statistical principle that applies to normally distributed data (bell-shaped curves). Empirical Rule tells us how data is spread around the mean in such (bell-shaped) distributions.

Empirical Rule states that:

  • 68% of data falls within 1 standard deviation ($\sigma$) of the mean ($\mu$). In other words, 68% of the data falls within ±1 standard deviation ($\sigma$) of the mean ($\mu$). Range: $\mu-1\sigma$ to $\mu+1\sigma$.
  • 95% of data falls within 2 standard deviations ($\sigma$) of the mean ($\mu$). In other words, 95% of the data falls within ±2 standard deviations ($2\sigma$) of the mean ($\mu$). Range: $\mu-2\sigma$ to $\mu+2\sigma$.
  • 99.7% of data falls within 3 standard deviations ($\sigma$) of the mean ($\mu$). In other words, 99.7% of the data falls within ±3 standard deviations ($3\sigma$) of the mean ($\mu$). Range: $\mu-3\sigma$ to $\mu+3\sigma$.

Visual Representation of Empirical Rule

The empirical rule can be visualized from the following graphical representation:

Visual Representation of Empirical Rule

Key Points

  • Empirical Rule only applies to normal (symmetric, bell-shaped) distributions.
  • It helps estimate probabilities and identify outliers.
  • About 0.3% of data lies beyond ±3σ (considered rare events).

Numerical Example of Empirical Rule

Suppose adult human heights are normally distributed with Mean ($\mu$) = 70 inches and standard deviation ($\sigma$) = 3 inches. Then:

  • 68% of heights are between 67–73 inches ($\mu \pm \sigma \Rightarrow 70 \pm 3$ ).
  • 95% are between 64–76 inches ($\mu \pm 2\sigma\Rightarrow 70 \pm 2\times 3$).
  • 99.7% are between 61–79 inches ($\mu \pm 3\sigma \Rightarrow 70 ± 3\times 3$).

This rule is a quick way to understand variability in normally distributed data without complex calculations. For non-normal distributions, other methods (like Chebyshev’s inequality) may be used.

Real-Life Applications & Examples

  • Quality Control in Manufacturing: Manufacturers measure product dimensions (e.g., bottle fill volume, screw lengths). If the process is normally distributed, the Empirical Rule helps detect defects: If soda bottles have a mean volume of 500ml with $\sigma$ = 10ml:
    • 68% of bottles will be between 490ml–510ml.
    • 95% will be between 480ml–520ml.
    • Bottles outside 470ml–530ml (3$\sigma$) are rare and may indicate a production issue.
  • Human Height Distribution: The Heights of people in a population often follow a normal distribution. If the average male height is 70 inches (5’10”) with $\sigma$ = 3 inches:
    • 68% of men are between 67–73 inches.
    • 95% are between 64–76 inches.
    • 99.7% are between 61–79 inches.
  • Test Scores (Standardized Exams): The exam scores (SAT, IQ tests) are often normally distributed. If SAT scores have $\mu$ = 1000 and $\sigma$ = 200:
    • 68% of students score between 800–1200.
    • 95% score between 600–1400.
    • Extremely low (<400) or high (>1600) scores are rare.
  • Financial Market Analysis (Stock Returns): The daily stock returns often follow a normal distribution. If a stock has an average daily return of 0.1% with σ = 2%: If a stock has an average daily return of 0.1% with σ = 2%:
    • 68% of days will see returns between -1.9% to +2.1%.
    • 95% will be between -3.9% to +4.1%.
    • Extreme crashes or surges beyond ±6% are very rare (0.3%).
  • Medical Data (Blood Pressure, Cholesterol Levels): Many health metrics are normally distributed. If the average systolic blood pressure is 120 mmHg with $\sigma$ = 10:
    • 68% of people have readings between 110–130 mmHg.
    • 95% fall within 100–140 mmHg.
    • Readings above 150 mmHg may indicate hypertension.
  • Weather Data (Temperature Variations): The daily temperatures in a region often follow a normal distribution. If the average July temperature is 85°F with σ = 5°F:
    • 68% of days will be between 80°F–90°F.
    • 95% will be between 75°F–95°F.
    • Extremely hot (>100°F) or cold (<70°F) days are rare.

Why the Empirical Rule Matters

  • It helps in predicting probabilities without complex calculations.
  • It is used in risk assessment (finance, insurance).
  • It guides quality control and process improvements.
  • It assists in setting thresholds (e.g., medical diagnostics, passing scores).

FAQs about Empirical Rule

  • What is the empirical rule?
  • For what kind of probability distribution, the empirical rule is used.
  • What is the area under the curve (or percentage) if data falls within 1, 2, and 3 standard deviations?
  • Represent the rule graphically.
  • Give real-life applications and examples of the rule.
  • Why the empirical rule matters, describe.

R Frequently Asked Questions

Leave a Comment

Discover more from Statistics for Data Science & Analytics

Subscribe now to keep reading and get access to the full archive.

Continue reading