Quartiles

Introduction to Quantiles and Quartiles

Quantiles are the techniques used to divide the data into different equal parts. For example, quantiles divide the data into four equal parts. Quartile comes from quarter which means 4th part. Deciles divide the data into ten equal parts and they come from deca means the 10th part. Percentiles divide the data into hundred parts and it comes to percent which means the 100th part.

Therefore, quartiles, deciles, and percentiles are used to divide the data into 4, 10, and 100 parts respectively. The quantiles, deciles, and percentiles are collectively called quantiles.

Quartiles

Quartiles are the rules which divide the data into four equal parts. When we divide any data into four equal parts then we cut it at e equidistant points. Therequartiles ($Q_1, Q_2$, and $Q_3$) as quartiles divide the data into four equal parts so divide the number of observations by four for each quartile.

Quartiles for Ungroup Data

\begin{align*}
Q_1 &= \left(\frac{n+1}{4}\right)th \text{ value is the} \frac{1}{4} \text{ part}\\
Q_2 &= \left(\frac{2(n+1)}{4}\right)th \text{ value is the} \frac{2}{4} \text{ part}\\
\left(\frac{3(n+1)}{4}\right)th \text{ value is the} \frac{3}{4} \text{ part}
\end{align*}

The following ungroup data has 96 observations $(n=96)$

222225253030303131333639
404042424848505152555759
818689899091919192939393
939494949596969697979898
999999100100100101101102102102102
102103103104104104105106106106107108
108108109109109110111112112113113113
113114115116116117117117118118119121

The first, second, and third quartiles of the above data set are:

\begin{align*}
Q_1 &= \left(\frac{n}{4}\right)th \text{ position } = \left(\frac{96}{4} = 24th \text{ value} = 59\\
Q_2 &= \left(\frac{2\times 96}{4}\right) = 48th \text{position} = 98\\
Q_3 &= \left(\frac{3\times n}{4}\right)th = \left(\frac{3\times 96}{}\right)th \text{ position} = 72th \text{ position} = 108
\end{align*}

Note that the above data is already sorted. If data is not sorted, first we need to arrange/sort the data in ascending order.

Quartiles for Gruoped Data

For the following grouped data one can also compute the quantiles, hence the quartiles.

ClassesfxC.B.CF
65-84974.564.5-84.59
85-1041094.584.5-104.519
105-12417114.5104.4.5-124.536
125-14410134.5124.5-144.546
145-1645154.5144.5-164.551
165-1844174.5164.5-184.455
185-2045194.5184.5-204.560
Total60   

From the above-grouped data, we have 60 observations $(n=60)= \sum\limits_{i=1}^n = f_i = \Sigma f = 60$. The three quartile will be

\begin{align*}
\frac{n}{4} &= \left(\frac{60}{4}\right)th = 15th \text{ value}\\
Q_1 &= l + \frac{h}{f}\left(\frac{n}{4} – CF\right) = 84.5 + \frac{20}{10}(15-9) = 96.5\\
\frac{2n}{4} &= \left(\frac{2\times 60}{4} \right) = 30th \text{ value}\\
Q_2 &= l + \frac{h}{f}\left(\frac{2n}{4} – CF\right) = 104.5 + \frac{20}{17}(30-19) = 117.44\\
\frac{3n}{4} &= \left(\frac{3\times 60}{4} \right) = 45th \text{ value}\\
Q_3 &= l + \frac{h}{f}\left(\frac{3n}{4} – CF\right) = 124.5 + \frac{20}{17}(45-36) = 142.5\\
\end{align*}

https://rfaqs.com

https://gmstat.com

Leave a Comment

Discover more from Statistics for Data Analyst

Subscribe now to keep reading and get access to the full archive.

Continue reading