Estimation Statistics MCQs Quiz covers the topics of Estimate and Estimation for the preparation of exams and different statistical job tests in Government/ Semi-Government or Private Organization sectors. These tests are also helpful in getting admission to different colleges and Universities. The Estimation Statistics MCQs Quiz will help the learner to understand the related concepts and enhance their knowledge too.
This MCQs quiz is about statistical inference. It will help you to understand the basic concepts related to Inferential statistics. This test will also help you to prepare yourself for different exam related to education or jobs.
Statistical inference is a branch of statistics in which we conclude (make wise decisions) about the population parameter by making use of sample information. Statistical inference can be further divided into the Estimation of parameters and testing of the hypothesis.
Estimation is a way of finding the unknown value of the population parameter from the sample information by using an estimator (a statistical formula) to estimate the parameter. One can estimate the population parameter by using two approaches (I) Point Estimation and (ii) Interval Estimation.
In point Estimation, a single numerical value is computed for each parameter, while in interval estimation a set of values (interval) for the parameter is constructed. The width of the confidence interval depends on the sample size and confidence coefficient. However, it can be decreased by increasing the sample size. The estimator is a formula used to estimate the population parameter by making use of sample information.
Online Estimation Statistics MCQs
- The process of making estimates about the population parameter from a sample is called
- There are two main branches of statistical inference, namely
- Estimation can be classified into
- A formula or rule used for estimating the parameter of interest is called:
- ‘Statistic’ is an estimator and its computer values are called:
- The estimate is the observed value of an:
- The process of using sample data to estimate the values of unknown population parameters is called
- The numerical value which we determine from the sample for a population parameter is called
- A single value used to estimate a population value is called:
- A set (range) of values calculated from the sample data and is likely to contain the true value of the parameter with some probability is called:
- A range (set) of values within which the population parameter is expected to occur is called:
- The end points of a confidence interval are called:
- The probability associated with confidence interval is called
- The estimator is said to be ________ if the mean of the estimator is not equal to the mean of the population parameter.
- If $\hat{\theta}$ is the estimator of the parameter $\theta$, then $\hat{\theta}$ is called unbiased if:
- The value of a statistic tends towards the value of the population as the sample size increases. What is it said to be?
- For computing the confidence interval about a single population variance, the following test will be used
- The end points of a confidence interval are called
- The difference between the two end points of a confidence interval is called
- The estimate is the observed value of an
Estimation is a fundamental part of statistics because populations can be very large or even infinite, making it impossible to measure every single member. By using estimation techniques, we can draw conclusions about the bigger picture from a manageable amount of data.
Take another Quiz: Estimation Statistics MCQs
the answer for question 2 is not correct because unbiasedness implies” =”
Thank you! correction is made in the equation.