Breusch Pagan Test for Heteroscedasticity

The Breusch Pagan test (named after Trevor Breusch and Adrian Pagan) is used to check for the presence of heteroscedasticity in a linear regression model.

Assume our regression model is $Y_i = \beta_1 + \beta_2 X_{2i} + \mu_i$ i.e we have simple linear regression model, and $E(u_i^2)=\sigma_i^2$, where $\sigma_i^2=f(\alpha_1 + \alpha_2 Z_{2i})$,

That is $\sigma_i^2$ is some function of the non-stochastic variable $Z$’s. The $f()$ allows for both the linear and non-linear forms of the model. The variable $Z$ is the independent variable $X$ or it could represent a group of independent variables other than $X$.

Step to Perform Breusch Pagan test

  1. Estimate the model by OLS and obtain the residuals $\hat{u}_1, \hat{u}_2+\cdots$
  2. Estimate the variance of the residuals i.e. $\hat{\sigma}^2=\frac{\sum e_i^2}{(n-2)}$
  3. Run the regression $\frac{e_i^2}{\hat{\sigma^2}}=\beta_1+\beta_2 Z_i + u_i$ and compute the explained sum of squares (ESS) from this regression
  4. Test the statistical significance of $\frac{ESS}{2}$ by $\chi^2$-test with 1 df at the appropriate level of significance ($\alpha$).
  5. Reject the hypothesis of homoscedasticity in favour of heteroscedasticity if $\frac{ESS}{2} > \chi^2_{(1)}$ at the appropriate level of $\alpha$.
Breusch Pagan Test Heteroscedasticity

Note that the

  • The Breusch Pagan test is valid only if $u_i$’s are normally distributed.
  • For k independent variables, $\frac{ESS}{2}$ has ($\chi^2$) Chi-square distribution with k degree of freedom.
  • If the $u_i$’s (error term) are not normally distributed, the White test is used.


  • Breusch, T.S.; Pagan, A.R. (1979). “Simple test for heteroscedasticity and random coefficient variation”. Econometrica (The Econometric Society) 47 (5): 1287–1294.

See the Numerical Example of the Breusch-Pagan Test for the Detection of Heteroscedasticity

R Frequently Asked Questions

Leave a Comment

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Discover more from Statistics for Data Analyst

Subscribe now to keep reading and get access to the full archive.

Continue reading

Scroll to Top